Skip to main content
Log in

DNA binding by Ru(II)–bis(bipyridine)–pteridinyl complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)2(L-pterin)]2+, [Ru(bpy)2(L-amino)]2+, and [Ru(bpy)2(L-diamino)]2+ (bpy is 2,2′-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)2(L-allox)]2+ and [Ru(bpy)2(L-Me2allox)]2+ (L-allox and L-Me2allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)2(dppz)]2+ (dppz is dipyridophenazine), and the negative control [Ru(bpy)3]2+. Reported are the syntheses of the three new Ru–pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru–pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes—[Ru(bpy)2(L-pterin)]2+ and [Ru(bpy)2(L-allox)]2+—exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes—[Ru(bpy)2(L-diamino)]2+, [Ru(bpy)2(L-amino)]2 and [Ru(bpy)2(L-pterin)]2+—behave as DNA molecular “light switches.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Software programs used for X-ray data processing, structure solution and ORTEP drawing are CrystalClear, Rigaku Corporation (1999); CrystalStructure, Crystal Structure Analysis Package, Rigaku/MSC (2002); REQAB4, R.A. Jacobsen (1994), private communication; SIR97 [28]. SHELXL-97: Program for the Refinement of Crystal Structures, G.M. Sheldrick (1997), University of Göttingen, Germany; and ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, C.K. Johnson (1976) ORNL-5138. Refinement produced residuals evaluated as R 1 = ∑ ||F o| − |F c||/∑ |F o|, wR 2 = {∑ w(F 2o  – F 2c )2/∑ w(F 2o )2}1/2, and goodness of fit equal to [∑ w(F 2o  – F 2c )2/(n − p)]1/2, where n is the number of reflections and p is the number of parameters refined.

Abbreviations

bpy:

2,2′-Bipyridine

CT:

Calf thymus

DMSO-d 6 :

Dimethyl sulfoxide-d 6

dppz:

Dipyridophenazine

ESI-MS:

Electrospray ionization mass spectrometry

FT:

Fourier transform

L-allox:

2,4-Diketopteridino[6,7-f]phenanthroline

L-amino:

4-Aminopteridino[6,7-f]phenanthroline

L-diamino:

2,4-Diaminopteridino[6,7-f]phenanthroline

L-Me2allox:

1,3-Dimethyl-2,4-diketopteridino[6,7-f]phenanthroline

L-pteridine:

Pteridinyl-phenanthroline

L-pterin:

2-Diamino-4(3H)-oxopteridino[6,7-f]phenanthroline

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Waring M (ed) (2006) Sequence specific DNA binding agents. Royal Society of Chemistry, Cambridge

  2. Demeunynck M, Bailly C, Wilson W D (eds) (2003) DNA and RNA binders: from small molecules to drugs. Wiley-VCH, Weinheim

  3. Gielen M, Tiekink ERT (eds) (2005) Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Wiley, London

  4. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215–224

    Article  PubMed  CAS  Google Scholar 

  5. Zhen Q, Ye B, Zhang Q, Liu J, Li H, Ji L, Wang LJ (1999) Inorg Biochem 76:47–53

    Article  CAS  Google Scholar 

  6. Carlson DL, Huchial DH, Mantilla EJ, Sheardy RD, Murphy WR (1993) J Am Chem Soc 115:6424–6225

    Google Scholar 

  7. Boerner LJK, Zaleski JM (2005) Curr Opin Chem Biol 9:135–144

    Article  PubMed  CAS  Google Scholar 

  8. Clarke MJ (2003) Coord Chem Rev 236:209–233

    Article  CAS  Google Scholar 

  9. Ji L, Zou X, Liu J (2001) Coord Chem Rev 216–217:513–536

    Google Scholar 

  10. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777–2795

    Article  PubMed  CAS  Google Scholar 

  11. Friedman AE, Chambron J, Sauvage J, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960–4962

    Article  CAS  Google Scholar 

  12. Haq I, Lincoln P, Suh D, Norden B, Chowdhry BZ, Chaires JB (1995) J Am Chem Soc 117:4788–4796

    Article  CAS  Google Scholar 

  13. Biver T, Cavazza C, Secco F, Venturini M (2007) J Inorg Biochem 101:461–469

    Article  PubMed  CAS  Google Scholar 

  14. Hiort C, Lincoln P, Norden B (1993) J Am Chem Soc 115:3448–3454

    Article  CAS  Google Scholar 

  15. Ambroise A, Maiya BG (2000) Inorg Chem 39:4256–4263

    Article  PubMed  CAS  Google Scholar 

  16. Tan L-F, Chao H, Zhou Y-F, Ji L-N (2007) Polyhedron 26:3029–3036

    Article  CAS  Google Scholar 

  17. Chouai A, Wicke SE, Turro C, Bacsa J, Dunbar KR, Wang D, Thummel RP (2005) Inorg Chem 44:5996–6003

    Article  PubMed  CAS  Google Scholar 

  18. Ambroise A, Maiya BG (2000) Inorg Chem 39:4264–4272

    Article  PubMed  CAS  Google Scholar 

  19. Burgmayer SJN (1998) In: Clarke MJ (ed) Bioinorganic chemistry of the less common transition metals, structure and bonding, vol 92. Springer, Heidelberg, pp 67–120

  20. Yoshimoto K, Nishizawa S, Minagawa M, Teramae N (2003) J Am Chem Soc 125:8982–8983

    Article  PubMed  CAS  Google Scholar 

  21. Black KJ, Huang H, High S, Starks L, Olson M, McGuire ME (1993) Inorg Chem 32:5591–5596

    Article  CAS  Google Scholar 

  22. Gao F, Chao H, Zhou F, Yuan Y-X, Peng B, Ji L-N (2006) J Inorg Biochem 100:1487–1494

    Article  PubMed  CAS  Google Scholar 

  23. Gao F, Chao H, Zhou F, Xu L-C, Zheng K-C, Ji L-N (2007) Helv Chim Acta 90:36–51

    Article  CAS  Google Scholar 

  24. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimao I (1992) Bull Chem Soc Jpn 65:1006–1011

    Article  CAS  Google Scholar 

  25. Reichnann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047–3053

    Article  Google Scholar 

  26. Cohen G, Eisenberg H (1968) Biopolymers 6:1077–1100

    Article  PubMed  CAS  Google Scholar 

  27. Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  28. Altomare A, Burla M, Camalli M, Cascarano G, Giacovazzo C, Guagliardi A, Moliterni A, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  29. Stephenson MD, Prior TJ, Hardie MJ (2008) Cryst Growth Des 8:643–653

    Article  CAS  Google Scholar 

  30. Otsuka T, Sekine A, Fujigasaki N, Ohashi Y, Kaizu Y (2001) Inorg Chem 40:3406–3412

    Article  PubMed  CAS  Google Scholar 

  31. Fantacci S, De Angelis F, Sgamelloti A, Re N (2004) Chem Phys Lett 396:43

    Article  CAS  Google Scholar 

  32. Xu L-C, Li J, Shen Y, Zheng K-C, Ji L-N (2007) J Phys Chem A 111:273–280

    Article  PubMed  CAS  Google Scholar 

  33. Pfleiderer W (1982) In: Wachter H, Curtius H, Pfleiderer W (eds) Biochemical and clinical aspects of pteridines. De Gruyter, Berlin, pp 3–25

  34. Suh D, Chaires JB (1995) Bioorg Med Chem 3:723–728

    Article  PubMed  CAS  Google Scholar 

  35. Vaidyanathan VG, Nair BU (2003) J Inorg Biochem 95:334–342

    Article  PubMed  CAS  Google Scholar 

  36. Sobell HM, Tsai CC, Jain SC, Gilbert SG (1977) J Mol Biol 114:333–365

    Article  PubMed  CAS  Google Scholar 

  37. Tsai CC, Jain SC, Sobell HM (1975) Proc Natl Acad Sci USA 72:628–632

    Article  PubMed  CAS  Google Scholar 

  38. Waring MJ (1965) J Mol Biol 13:269–282

    Article  PubMed  CAS  Google Scholar 

  39. Dupureur CM, Barton JK (1997) Inorg Chem 36:33–43

    Article  CAS  Google Scholar 

  40. Tuite E, Lincoln P, Norden B (1997) J Am Chem Soc 119:239–240

    Article  CAS  Google Scholar 

  41. Maheswari PU, Palaniandavar M (2004) J Inorg Biochem 98:219–230

    Article  CAS  Google Scholar 

  42. Kalsbeck W, Thorp HH (1993) J Am Chem Soc 115:7146–7151

    Article  CAS  Google Scholar 

  43. Garbett NC, Hammond NB, Graves DE (2004) Biophys J 87:3974–3981

    Article  PubMed  CAS  Google Scholar 

  44. Maheswari PU, Rajendiran V, Palaniandavar M, Parthasarathi R, Subramanian V (2006) J Inorg Biochem 100:3–17

    Article  PubMed  CAS  Google Scholar 

  45. Kalsbeck W, Thorp HH (1994) Inorg Chem 33:3427–3429

    Article  CAS  Google Scholar 

  46. Chaires JB, Dattagupta N, Crothers DM (1982) Biochemistry 21:3933–3940

    Article  PubMed  CAS  Google Scholar 

  47. Crothers DM (1971) Biopolymers 10:2147–2160

    Article  PubMed  CAS  Google Scholar 

  48. Deshpande MS, Kumbhar AA, Kumbhar AS (2007) Inorg Chem 46:5450–5452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Pat Carroll and the Facility for X-ray Crystallography in the Chemistry Department of the University of Pennsylvania and Alanna Albano and Lindsay Alaishuski for their contributions to early development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon J. Nieter Burgmayer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 445 kb).

ESM (PDF 91.4 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalton, S.R., Glazier, S., Leung, B. et al. DNA binding by Ru(II)–bis(bipyridine)–pteridinyl complexes. J Biol Inorg Chem 13, 1133–1148 (2008). https://doi.org/10.1007/s00775-008-0399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0399-y

Keywords

Navigation