Skip to main content
Log in

Kinetic and product distribution analysis of NO· reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Hydroxylamine oxidoreductase (HAO) from the ammonia-oxidizing bacterium Nitrosomonas europaea normally catalyzes the four-electron oxidation of hydroxylamine to nitrite, which is the second step in ammonia-dependent respiration. Here we show that, in the presence of methyl viologen monocation radical (MVred), HAO can catalyze the reduction of nitric oxide to ammonia. The process is analogous to that catalyzed by cytochrome c nitrite reductase, an enzyme found in some bacteria that use nitrite as a terminal electron acceptor during anaerobic respiration. The availability of a reduction pathway to ammonia is an important factor to consider when designing in vitro studies of HAO, and may also have some physiological relevance. The reduction of nitric oxide to ammonia proceeds in two kinetically distinct steps: nitric oxide is first reduced to hydroxylamine, and then hydroxylamine is reduced to ammonia at a tenfold slower rate. The second step was investigated independently in solutions initially containing hydroxylamine, MVred, and HAO. Both steps show first-order dependence on nitric oxide and HAO concentrations, and zero-order dependence on MVred concentration. The rate constants governing each reduction step were found to have values of (4.7 ± 0.3) × 105 and (2.06 ± 0.04) × 104 M−1 s−1, respectively. A second reduction pathway, with second-order dependence on nitric oxide, may become available as the concentration of nitric oxide is increased. Such a pathway might lead to production of nitrous oxide. We estimate a maximum value of (1.5 ± 0.05) × 1010 M−2 s−1 for the rate constant of the alternative pathway, which is small and suggests that the pathway is not physiologically important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Scheme 4

Similar content being viewed by others

Abbreviations

AOB:

Ammonia-oxidizing bacteria

HAO:

Hydroxylamine oxidoreductase

Mb:

Ferromyoglobin

MbNO:

Nitrosomyoglobin

MVox :

Methyl viologen dication

MVred :

Methyl viologen monocation radical

SVD:

Singular value decomposition

References

  1. Ehrlich HL (2002) Geomicrobiology. Marcel Dekker Inc., New York

    Google Scholar 

  2. Fenchel T, King GM, Blackburn TH (1998) Bacterial biogeochemistry, 2nd edn. Academic Press, London

    Google Scholar 

  3. Schmidt I, Steenbakkers PJM, Huub JM, Schmidt K, Jetten MSM (2004) J Bacteriol 186:2781–2788

    Article  PubMed  CAS  Google Scholar 

  4. Kroneck PMH, Beuerle J, Schumacher W (1992) In: Sigel H, Sigel A (eds) Metal ions in biological systems. Marcel Dekker Inc., New York, pp 455–505

  5. Wood PM (1988) In: Cole JA, Ferguson SJ (eds) The nitrogen and sulfur cycles. Cambridge University Press, New York, pp 219–243

  6. Hooper AB (1989) In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, pp 239–265

  7. Bock E, Koops HP, Harms H, Ahlers B (1991) In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, San Diego, pp 171–200

  8. Schlegel HG (1981) In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, New York, pp 3–12

  9. (1994) Biological nitrogen fixation. National Academy Press, Washington, pp 6–32

  10. Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Springer, New York

    Google Scholar 

  11. Prince RC, George GN (1997) Nat Struct Biol 4:247–250

    Article  PubMed  CAS  Google Scholar 

  12. Kampschreur MJ, Tan NCG, Picioreanu C, Jetten MSM, Schmidt I, van Loosdrecht MCM (2006) Biochem Soc Trans 34:179–181

    Article  PubMed  CAS  Google Scholar 

  13. Hooper AB, Nason A (1965) J Biol Chem 240:4044–4057

    PubMed  CAS  Google Scholar 

  14. Andersson KK, Hooper AB (1983) FEBS Lett 164:236–240

    Article  CAS  Google Scholar 

  15. Ferguson SJ (1998) Curr Opin Chem Biol 2:182–193

    Article  PubMed  CAS  Google Scholar 

  16. Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) Nat Struct Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  17. Hooper AB, Terry KR (1977) Biochemistry 16:455–459

    Article  PubMed  CAS  Google Scholar 

  18. Hendrich MP, Logan M, Andersson KK, Arciero DM, Lipscomb JD, Hooper AB (1994) J Am Chem Soc 116:11961–11968

    Article  CAS  Google Scholar 

  19. Logan MSP, Balny C, Hooper AB (1995) Biochemistry 34:9028–9037

    Article  PubMed  CAS  Google Scholar 

  20. Logan MSP, Hooper AB (1995) Biochemistry 34:9257–9264

    Article  PubMed  CAS  Google Scholar 

  21. Arciero DM, Hooper AB (1993) J Biol Chem 268:14645–14654

    PubMed  CAS  Google Scholar 

  22. Iverson TM, Arciero DM, Hsu BT, Logan MSP, Hooper AB, Rees DC (1998) Nat Struct Biol 5:1005–1012

    Article  PubMed  CAS  Google Scholar 

  23. Andersson KK, Lipscomb JD, Valentine M, Munck E, Hooper AB (1986) J Biol Chem 261:1126–1138

    PubMed  CAS  Google Scholar 

  24. Whittaker M, Bergman D, Arciero DM, Hooper AB (2000) Biochim Biophys Acta 1459:346–355

    Article  PubMed  CAS  Google Scholar 

  25. Hoshino M, Maeda M, Konishi R, Seki H, Ford PC (1996) J Am Chem Soc 118:5702–5707

    Article  CAS  Google Scholar 

  26. Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1017

    Article  PubMed  CAS  Google Scholar 

  27. Wolak M, van Eldik R (2002) Coord Chem Rev 230:263–282

    Article  CAS  Google Scholar 

  28. Fernandez BO, Ford PC (2003) J Am Chem Soc 125:10510–10511

    Article  PubMed  CAS  Google Scholar 

  29. Choi IK, Liu Y, Wei Z, Ryan MD (1997) Inorg Chem 36:3113–3118

    Article  PubMed  CAS  Google Scholar 

  30. Feng D, Ryan MD (1987) Inorg Chem 26:2480–2483

    Article  CAS  Google Scholar 

  31. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737–11745

    Article  PubMed  CAS  Google Scholar 

  32. Cabail MZ, Kostera J, Pacheco AA (2005) Inorg Chem 44:225–231

    Article  PubMed  CAS  Google Scholar 

  33. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339–406

    Article  CAS  Google Scholar 

  34. Kurnikov IV, Ratner MA, Pacheco AA (2005) Biochemistry 44:1856–1863

    Article  PubMed  CAS  Google Scholar 

  35. Hendrich MP, Petasis D, Arciero DM, Hooper AB (2001) J Am Chem Soc 123:2997–3005

    Article  PubMed  CAS  Google Scholar 

  36. Shriver D, Atkins P (2006) Inorganic chemistry, 4th edn. WH Freeman and Co, San Francisco, p 775

    Google Scholar 

  37. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulus H, Beckman JS (1992) Chem Res Toxicol 5:834–842

    Article  PubMed  CAS  Google Scholar 

  38. Hooper AB, Tran VM, Balny C (1984) Eur J Biochem 141:565–571

    Article  PubMed  CAS  Google Scholar 

  39. Cabail MZ, Pacheco AA (2003) Inorg Chem 42:270–272

    Article  PubMed  CAS  Google Scholar 

  40. Cabail MZ, Lace PJ, Uselding J, Pacheco AA (2002) J Photochem Photobiol A Chem 152:109–121

    Article  CAS  Google Scholar 

  41. Namiki S, Arai T, Fujimori K (1997) J Am Chem Soc 119:3840–3841

    Article  CAS  Google Scholar 

  42. Bodemer G, Ellis LM, Lace PJ, Mooren PE, Patel NK, Ver Haag M, Pacheco AA (2004) J Photochem Photobiol A Chem 163:53–60

    Article  CAS  Google Scholar 

  43. Cabail MZ, Moua V, Bae E, Meyer A, Pacheco AA (2007) J Phys Chem A 111:1207–1213

    Article  PubMed  CAS  Google Scholar 

  44. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C the art of scientific computing, chap 15, 2nd edn. Cambridge University Press, Cambridge, pp 59–70

  45. Strang G (1988) Linear algebra and its applications, 3rd edn. Harcourt Brace Jovanivich Inc., San Diego, pp 153–350

    Google Scholar 

  46. Codd R, Astashkin AV, Pacheco A, Raitsimring AM, Enemark JH (2002) J Biol Inorg Chem 7:338–350

    Article  PubMed  CAS  Google Scholar 

  47. Hoshino M, Ozawa K, Seki H, Ford PC (1993) J Am Chem Soc 115:9568–9575

    Article  CAS  Google Scholar 

  48. Cunha CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ (2003) J Biol Chem 278:17455–17465

    Article  PubMed  CAS  Google Scholar 

  49. Angove HC, Cole JA, Richardson DJ, Butt JN (2002) J Biol Chem 277:23374–23381

    Article  PubMed  CAS  Google Scholar 

  50. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Nature 400:476–480

    Article  PubMed  CAS  Google Scholar 

  51. Hooper AB, Terry KR (1979) Biochim Biophys Acta 571:12–20

    PubMed  CAS  Google Scholar 

  52. Yamanaka T, Shinra M (1974) J Biochem 75:1265–1273

    PubMed  CAS  Google Scholar 

  53. Hooper AB, Maxwell PC, Terry KR (1978) Biochemistry 17:2984–2989

    Article  PubMed  CAS  Google Scholar 

  54. Iverson TM, Arciero DM, Hooper AB, Rees DC (2001) J. Biol Inorg Chem 6:390–397

    Article  CAS  Google Scholar 

  55. Arciero DM, Balny C, Hooper AB (1991) Biochemistry 30:11466–11472

    Article  PubMed  CAS  Google Scholar 

  56. Arciero DM, Collins MJ, Haladjian J, Bianco P, Hooper AB (1991) Biochemistry 30:11459–11465

    Article  PubMed  CAS  Google Scholar 

  57. Upadhyay AK, Petasis DT, Arciero DM, Hooper AB, Hendrich MP (2003) J Am Chem Soc 125:1738–1747

    Article  PubMed  CAS  Google Scholar 

  58. Alluisetti GE, Almaraz AE, Amorebieta VT, Doctorovich F, Olabe JA (2004) J Am Chem Soc 126:13432–13442

    Article  PubMed  CAS  Google Scholar 

  59. Hendrich MP, Upadhyay AK, Riga J, Arciero DM, Hooper AB (2002) Biochemistry 41:4603–4611

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible by support from the National Institutes of Environmental Health Sciences (NIEHS, grant no. 1 R15 ES013955-01), and from the University of Wisconsin-Milwaukee’s Research Growth Initiative (101X076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andrew Pacheco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 1420 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostera, J., Youngblut, M.D., Slosarczyk, J.M. et al. Kinetic and product distribution analysis of NO· reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase. J Biol Inorg Chem 13, 1073–1083 (2008). https://doi.org/10.1007/s00775-008-0393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0393-4

Keywords

Navigation