Skip to main content
Log in

Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg2+ to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis–Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5′-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+, and [Co(NH3)6]3+ on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5γ. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg2+. For example, the presence of only 5% Ca2+ relative to Mg2+ results in a decrease in the maximal turnover rate k cat by 50%. Ca2+ thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg2+ in the folded state, the latter being indicative of at least one specific Ca2+ binding pocket interfering directly with catalysis. Similar results are obtained with Mn2+, Cd2+, and [Co(NH3)6]3+. Ni2+ is a much more powerful inhibitor and the presence of either Zn2+ or Pb2+ leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg2+ and raises the question of biological relevance at least in the case of Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gesteland RF, Cech TR, Atkins JF (2006) The RNA world. Cold Spring Harbor Press, New York

    Google Scholar 

  2. Joyce GF (1993) Pure Appl Chem 65:1205–1212

    Article  PubMed  CAS  Google Scholar 

  3. Beaudry AA, Joyce GF (1992) Science 257:635–641

    Article  PubMed  CAS  Google Scholar 

  4. Kazakov S, Altman S (1992) Proc Natl Acad Sci USA 89:7939–7943

    Article  PubMed  CAS  Google Scholar 

  5. Sigel RKO, Pyle AM (2007) Chem Rev 107:97–113

    Article  PubMed  CAS  Google Scholar 

  6. O’Rear JL, Wang S, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D (2001) RNA 7:537–545

    Article  PubMed  CAS  Google Scholar 

  7. Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG (1998) Chem Biol 5:587–595

    Article  PubMed  CAS  Google Scholar 

  8. Curtis EA, Bartel DP (2001) RNA 7:546–552

    Article  PubMed  CAS  Google Scholar 

  9. Roychowdhury-Saha M, Burke DH (2006) RNA 12:1846–1852

    Article  PubMed  CAS  Google Scholar 

  10. Dahm SC, Uhlenbeck OC (1991) Biochemistry 30:9464–9469

    Article  PubMed  CAS  Google Scholar 

  11. Chowrira BM, Berzal-Herranz A, Burke JM (1993) Biochemistry 32:1088–1095

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Lu Y (2000) J Am Chem Soc 122:10466–10467

    Article  CAS  Google Scholar 

  13. Santoro SW, Joyce GF (1997) Proc Natl Acad Sci USA 94:4262–4266

    Article  PubMed  CAS  Google Scholar 

  14. Faulhammer D, Famulok M (1997) J Mol Biol 269:188–202

    Article  PubMed  CAS  Google Scholar 

  15. Faulhammer D, Famulok M (1996) Angew Chem Int Ed 35:2837–2841

    Article  CAS  Google Scholar 

  16. Li J, Zheng WC, Kwon AH, Lu Y (2000) Nucleic Acids Res 28:481–488

    Article  PubMed  CAS  Google Scholar 

  17. Lehman N, Joyce GF (1993) Nature 361:182–185

    Article  PubMed  CAS  Google Scholar 

  18. Lehman N, Joyce GF (1993) Curr Biol 3:723–734

    Article  PubMed  CAS  Google Scholar 

  19. Burton AS, Lehman N (2006) Biochimie 88:819–825

    Article  PubMed  CAS  Google Scholar 

  20. Costa M, Fontaine JM, Goër SL, Michel F (1997) J Mol Biol 274:353–364

    Article  PubMed  CAS  Google Scholar 

  21. Pyle AM (2002) J Biol Inorg Chem 7:679–690

    Article  PubMed  CAS  Google Scholar 

  22. Sigel RKO (2005) Eur J Inorg Chem 12:2281–2292

    Article  CAS  Google Scholar 

  23. Waldsich C, Pyle AM (2008) J Mol Biol 375:572–580

    Article  PubMed  CAS  Google Scholar 

  24. Waldsich C, Pyle AM (2007) Nat Struct Mol Biol 14:37–44

    Article  PubMed  CAS  Google Scholar 

  25. Fedorova O, Zingler N (2007) Biol Chem 388:665–678

    Article  PubMed  CAS  Google Scholar 

  26. Gordon PM, Piccirilli JA (2001) Nat Struct Biol 8:893–898

    Article  PubMed  CAS  Google Scholar 

  27. Toor N, Keating KS, Taylor SD, Pyle AM (2008) Science 320:77–82

    Article  PubMed  CAS  Google Scholar 

  28. Hertweck M, Müller MW (2001) Eur J Biochem 268:4610–4620

    Article  PubMed  CAS  Google Scholar 

  29. Sigel RKO, Pyle AM (2003) Met Ions Biol Syst 40:477–512

    PubMed  CAS  Google Scholar 

  30. Sigel RKO, Vaidya A, Pyle AM (2000) Nat Struct Biol 7:1111–1116

    Article  PubMed  CAS  Google Scholar 

  31. Boudvillain M, de Lencastre A, Pyle AM (2000) Nature 406:315–318

    Article  PubMed  CAS  Google Scholar 

  32. Boudvillain M, Pyle AM (1998) EMBO J 17:7091–7104

    Article  PubMed  CAS  Google Scholar 

  33. Fedorova O, Pyle AM (2005) EMBO J 24:3906–3916

    Article  PubMed  CAS  Google Scholar 

  34. Gordon PM, Fong R, Piccirilli JA (2007) Chem Biol 14:607–612

    Article  PubMed  CAS  Google Scholar 

  35. Freisinger E, Sigel RKO (2007) Coord Chem Rev 251:1834–1851

    Article  CAS  Google Scholar 

  36. Furler M, Knobloch B, Sigel RKO (2008) Inorg Chim Acta. doi: 10.1016/j.ica.2008.1003.1095

  37. Fedorova O, Su LJ, Pyle AM (2002) Methods 28:323–335

    Article  PubMed  CAS  Google Scholar 

  38. Pyle AM, Green JB (1994) Biochemistry 33:2716–2725

    Article  PubMed  CAS  Google Scholar 

  39. Sigel RKO, Song B, Sigel H (1997) J Am Chem Soc 119:744–755

    Article  CAS  Google Scholar 

  40. Babcock DF, Hille B (1998) Curr Opin Neurobiol 8:398–404

    Article  PubMed  CAS  Google Scholar 

  41. Carafoli E (1979) FEBS Lett 104:1–5

    Article  PubMed  CAS  Google Scholar 

  42. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) J Bioenerg Biomembr 29:185–193

    Article  PubMed  CAS  Google Scholar 

  43. Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Proc Natl Acad Sci USA A81:2035–2039

    Article  Google Scholar 

  44. Gallo S, Furler M, Sigel RKO (2005) Chimia 59:812–816

    Article  CAS  Google Scholar 

  45. Jarrell KA, Dietrich RC, Perlman PS (1988) Mol Cell Biol 8:2361–2366

    PubMed  CAS  Google Scholar 

  46. Sigel RKO, Sashital DG, Abramovitz DL, Palmer AG III, Butcher SE, Pyle AM (2004) Nat Struct Mol Biol 11:187–192

    Article  PubMed  CAS  Google Scholar 

  47. Herschlag D, Cech TR (1990) Biochemistry 29:10172–10180

    Article  PubMed  CAS  Google Scholar 

  48. Fedor MJ, Uhlenbeck OC (1992) Biochemistry 31:12042–12054

    Article  PubMed  CAS  Google Scholar 

  49. Sigel RKO, Freisinger E, Lippert B (2000) J Biol Inorg Chem 5:287–299

    Article  PubMed  CAS  Google Scholar 

  50. Erat MC, Sigel RKO (2007) Inorg Chem 46:11224–11234

    Article  PubMed  CAS  Google Scholar 

  51. Mikkola S, Stenman E, Nurmi K, Yousefi-Salakdeh E, Stromberg R, Lonnberg H (1999) J Chem Soc Perkin Trans 2 1619–1625

    Google Scholar 

  52. Chin K, Pyle AM (1995) RNA 1:391–406

    PubMed  CAS  Google Scholar 

  53. Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) J Mol Biol 315:297–310

    Article  PubMed  CAS  Google Scholar 

  54. Chu VT, Liu Q, Podar M, Perlman PS, Pyle AM (1998) RNA 4:1186–1202

    Article  PubMed  CAS  Google Scholar 

  55. Costa M, Michel F (1995) EMBO J 14:1276–1285

    PubMed  CAS  Google Scholar 

  56. Su LHJ, Brenowitz M, Pyle AM (2003) J Mol Biol 334:639–652

    Article  PubMed  CAS  Google Scholar 

  57. Qin PZ, Pyle AM (1997) Biochemistry 36:4718–4730

    Article  PubMed  CAS  Google Scholar 

  58. Pyle AM (1996) In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology. Springer, New York, pp 75–107

  59. Pyle AM (1996) Met Ions Biol Syst 32:479–519

    PubMed  CAS  Google Scholar 

  60. Flynn-Charlebois A, Lee N, Suga H (2001) Biochemistry 40:13623–13632

    Article  PubMed  CAS  Google Scholar 

  61. Butcher SE (2001) Curr Opin Struct Biol 11:315–320

    Article  PubMed  CAS  Google Scholar 

  62. Doherty EA, Doudna JA (2001) Annu Rev Biophys Biomol Struct 30:457–475

    Article  PubMed  CAS  Google Scholar 

  63. Fedor MJ (2002) Curr Opin Struct Biol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  64. DeRose VJ (2003) Curr Opin Struct Biol 13:317–324

    Article  PubMed  CAS  Google Scholar 

  65. Morrissey SR, Horton TE, DeRose VJ (2000) J Am Chem Soc 122:3473–3481

    Article  CAS  Google Scholar 

  66. Kim N-K, Murali A, DeRose VJ (2005) J Am Chem Soc 127:14134–14135

    Article  PubMed  CAS  Google Scholar 

  67. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B (1997) J Cell Biol 136:833–844

    Article  PubMed  CAS  Google Scholar 

  68. Lehninger AL, Carafoli E, Rossi CS (1967) Adv Enzymol Relat Areas Mol Biol 29:259–320

    Article  PubMed  CAS  Google Scholar 

  69. Mccormack JG, Denton RM (1980) Biochem J 190:95–105

    PubMed  CAS  Google Scholar 

  70. Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Am J Physiol 267:C313–C339

    PubMed  CAS  Google Scholar 

  71. Carafoli E (2003) Trends Biochem Sci 28:175–181

    Article  PubMed  CAS  Google Scholar 

  72. Saris NE (1963) Scientiarum Fennica Commentationes Physico Mathematicae 28:3–59

    Google Scholar 

  73. De Luca M, Engstrom G (1961) Proc Natl Acad Sci USA 47:1744–1747

    Article  Google Scholar 

  74. Vasington FD, Murphy JV (1962) J Biol Chem 237:2670–2672

    PubMed  CAS  Google Scholar 

  75. Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G (1996) Proc Natl Acad Sci USA 93:9893–9898

    Article  PubMed  CAS  Google Scholar 

  76. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  77. Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng HL (1986) Cell 44:213–223

    Article  PubMed  CAS  Google Scholar 

  78. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  79. Martin RB (1986) Met Ions Biol Syst 20:21–65

    CAS  Google Scholar 

  80. Morf WE, Simon W (1971) Helv Chim Acta 54:794–810

    Article  CAS  Google Scholar 

  81. Sigel H, Massoud SS, Corfù NA (1994) J Am Chem Soc 116:2958–2971

    Article  CAS  Google Scholar 

  82. Sigel H, Griesser R (2005) Chem Soc Rev 34:875–900

    Article  PubMed  CAS  Google Scholar 

  83. Moreno-Luque CF, Griesser R, Ochocki J, Sigel H (2001) Z Anorgan Allgem Chem 627:1882–1887

    Article  Google Scholar 

  84. Sigel H, Massoud SS, Tribolet R (1988) J Am Chem Soc 110:6857–6865

    Article  CAS  Google Scholar 

  85. Scheller KH, Abel THJ, Polanyi PE, Wenk PK, Fischer BE, Sigel H (1980) Eur J Biochem 107:455–466

    Article  PubMed  CAS  Google Scholar 

  86. Muranyi A, Finn BE (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker, New York, pp 93–152

  87. Irving HM, Williams RJP (1953) J Chem Soc 3192–3210

  88. Grosshans CA, Cech TR (1989) Biochemistry 28:6888–6894

    Article  PubMed  CAS  Google Scholar 

  89. Kazakov S, Altman S (1991) Proc Natl Acad Sci USA 88:9193–9197

    Article  PubMed  CAS  Google Scholar 

  90. Giannakis C, Forbes IJ, Zalewski PD (1991) Biochem Biophys Res Commun 181:915–920

    Article  PubMed  CAS  Google Scholar 

  91. Stano NM, Chen J, McHenry CS (2006) Nat Struct Mol Biol 13:458–459

    Article  PubMed  CAS  Google Scholar 

  92. Sigel RKO, Sigel H (2007) Met Ions Life Sci 2:109–180

    CAS  Google Scholar 

  93. Travers KJ, Boyd N, Herschlag D (2007) RNA 13:1205–1213

    Article  PubMed  CAS  Google Scholar 

  94. Rode BM, Schwenk CF, Hofer TS, Randolf BR (2005) Coord Chem Rev 249:2993–3006

    Article  CAS  Google Scholar 

  95. Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Krieger, Malabar

    Google Scholar 

  96. Helm L, Merbach AE (1999) Coord Chem Rev 187:151–181

    Article  CAS  Google Scholar 

  97. Lincoln SF (2005) Helv Chim Acta 88:523–545

    Article  CAS  Google Scholar 

  98. Inada Y, Mohammed AM, Loeffler HH, Funahashi S (2005) Helv Chim Acta 88:461–469

    Article  CAS  Google Scholar 

  99. Lincoln SF, Merbach AE (1995) Adv Inorg Chem 42:1–88

    Article  CAS  Google Scholar 

  100. Sigel H, Martin RB (1994) Chem Soc Rev 23:83–91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maya Furler for the plasmid preparations and her as well as Olga Fedorova from Yale University for helpful discussions, and Michael Wächter for performing preliminary experiments. The plasmids pJD3′-673 and pJD15′-75 were a generous gift from Anna Marie Pyle from Yale University. Financial support from the Swiss National Science Foundation (SNF-Förderungsprofessur to R.K.O.S., PP002-114759/1) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland K. O. Sigel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erat, M.C., Sigel, R.K.O. Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 13, 1025–1036 (2008). https://doi.org/10.1007/s00775-008-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0390-7

Keywords

Navigation