Skip to main content
Log in

Folding of the prion peptide GGGTHSQW around the copper(II) ion: identifying the oxygen donor ligand at neutral pH and probing the proximity of the tryptophan residue to the copper ion

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The GGGTHSQW sequence in the amyloidogenic part of the prion protein is a potential binding site for Cu(II). We have previously studied the binding of copper to the shorter GGGTH peptide and showed that it is highly pH dependent (Hureau et al. in J. Biol. Inorg. Chem. 11:735–744, 2006). Two predominant complexes could be characterized at pH 6.7 and 9.0 with equatorial binding modes of 3N1O and 4N for the metal ion, respectively. In this work, we have further investigated the coordination of Cu(II) to the GGGTH peptide as well as the longer GGGTHSQW peptide in order to identify the oxygen donor ligand at neutral pH and to study the proximity and redox activity of the tryptophan residue of the latter. The results for both peptides show that, at pH 6.7, Cu(II) is coordinated by a carbonyl peptide backbone. At higher pH values, the carbonyl ligand dissociates and the coordination changes to a 4N binding mode, inducing a structural rearrangement that brings the GGGTHSQW peptide’s tryptophan residue into the vicinity of the copper ion, thus affecting their respective redox properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

ENDOR:

Electron–nuclear double resonance

EPR:

Electron paramagnetic resonance

ESEEM:

Electron spin echo envelope modulation

FTIR:

Fourier transform infrared

HYSCORE:

Hyperfine sublevel correlation

P5:

Ac–GGGTH–NH2

P8:

Ac–GGGTHSQW–NH2

References

  1. Carrell RW, Lomas DA (1997) Lancet 350:134–138

    Article  PubMed  CAS  Google Scholar 

  2. Kelly JW (1998) Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  3. Ross CA, Poirier MA (2004) Nat Med 10(Suppl):S10–S17

    Article  PubMed  CAS  Google Scholar 

  4. Sigel A, Sigel H, Sigel RKO (eds) (2006) Neurodegenerative diseases and metal ions. Wiley, Chichester

    Google Scholar 

  5. Millhauser GL (2007) Annu Rev Phys Chem 58:299–320

    Article  PubMed  CAS  Google Scholar 

  6. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Biochemistry 39:13760–13771

    Article  PubMed  CAS  Google Scholar 

  7. Bonomo RP, Cucinotta V, Giuffrida A, Impellizzeri G, Magri A, Pappalardo G, Rizzarelli E, Santoro AM, Tabbi G, Vagliasindi LI (2005) Dalton Trans 150–158

  8. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41:3991–4001

    Article  PubMed  CAS  Google Scholar 

  9. Garnett AP, Viles JH (2003) J Biol Chem 278:6795–6802

    Article  PubMed  CAS  Google Scholar 

  10. Luczkowski M, Kozlowski H, Legowska A, Rolka K, Remelli M (2003) Dalton Trans 619–624

  11. Morante S, Gonzalez-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2004) J Biol Chem 279:11753–11759

    Article  PubMed  CAS  Google Scholar 

  12. Pushie MJ, Rauk A (2003) J Biol Inorg Chem 8:53–65

    Article  PubMed  CAS  Google Scholar 

  13. Qin K, Yang Y, Mastrangelo P, Westaway D (2002) J Biol Chem 277:1981–1990

    Article  PubMed  CAS  Google Scholar 

  14. Shiraishi N, Ohta Y, Nishikimi M (2000) Biochem Biophys Res Commun 267:398–402

    Article  PubMed  CAS  Google Scholar 

  15. Stanczak P, Valensin D, Juszczyk P, Grzonka Z, Migliorini C, Molteni E, Valensin G, Gaggelli E, Kozlowski H (2005) Biochemistry 44:12940–12954

    Article  PubMed  CAS  Google Scholar 

  16. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Protein Sci 9:332–343

    PubMed  CAS  Google Scholar 

  17. Walter ED, Stevens DJ, Visconte MP, Millhauser GL (2007) J Am Chem Soc 129:15440–15441

    Article  PubMed  CAS  Google Scholar 

  18. Brown DR, Guantieri V, Grasso G, Impellizzeri G, Pappalardo G, Rizzarelli E (2004) J Inorg Biochem 98:133–143

    Article  PubMed  CAS  Google Scholar 

  19. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794–6803

    Article  PubMed  CAS  Google Scholar 

  20. Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S (2001) Biophys J 81:516–525

    Article  PubMed  CAS  Google Scholar 

  21. Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H (2005) J Am Chem Soc 127:996–1006

    Article  PubMed  CAS  Google Scholar 

  22. Hureau C, Charlet L, Dorlet P, Gonnet F, Spadini L, Anxolabéhère-Mallart E, Girerd JJ (2006) J Biol Inorg Chem 11:735–744

    Article  PubMed  CAS  Google Scholar 

  23. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) J Biol Chem 279:32018–32027

    Article  PubMed  CAS  Google Scholar 

  24. Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A (2001) J Phys Chem B 105:1631–1639

    Article  CAS  Google Scholar 

  25. Shearer J, Soh P (2007) Inorg Chem 46:710–719

    Article  PubMed  CAS  Google Scholar 

  26. Atherton NM, Horsewill AJ (1979) Mol Phys 37:1349–1361

    Article  CAS  Google Scholar 

  27. Schosseler PM, Wehrli B, Schweiger A (1997) Inorg Chem 36:4490–4499

    Article  PubMed  CAS  Google Scholar 

  28. Dong J, Canfield JM, Mehta AK, Shokes JE, Tian B, Childers WS, Simmons JA, Mao Z, Scott RA, Warncke K, Lynn DG (2007) Proc Natl Acad Sci USA 104:13313–13318

    Article  PubMed  CAS  Google Scholar 

  29. McCracken J, Pember S, Benkovic SJ, Villafranca JJ, Miller RJ, Peisach J (1988) J Am Chem Soc 110:1069–1074

    Article  CAS  Google Scholar 

  30. Harriman A (1987) J Phys Chem 91:6102–6104

    Article  CAS  Google Scholar 

  31. DeFelippis MR, Murthy CP, Broitman F, Weinraub D, Faraggi M, Klapper MH (1991) J Phys Chem 95:3416–3419

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and applications. Wiley, London

    Google Scholar 

  33. Tommos C, Skalicky JJ, Pilloud DL, Wand AJ, Dutton PL (1999) Biochemistry 38:9495–9507

    Article  PubMed  CAS  Google Scholar 

  34. Posener ML, Adams GE, Wardman P, Cuindall RB (1976) J Chem Soc Faraday Trans I 72:2231–2239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Agence Nationale de la Recherche, Programme Jeunes Chercheuses Jeunes Chercheurs (ANR-05-JCJC-0010 ‘NEUROARPE’ to P.D., including a postdoctoral fellowship to C.M.). We thank Guillaume Blain for technical assistance and maintenance of the Elexys EPR/ENDOR spectrometer, Emmanuelle Mothes and Luc Guilloreau for fluorescence measurements, Jérôme Santolini for assistance with the ATR-FTIR measurements, Alain Boussac for the use of the pulsed-EPR spectrometer and Elodie Anxolabéhère-Mallart for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Dorlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hureau, C., Mathé, C., Faller, P. et al. Folding of the prion peptide GGGTHSQW around the copper(II) ion: identifying the oxygen donor ligand at neutral pH and probing the proximity of the tryptophan residue to the copper ion. J Biol Inorg Chem 13, 1055–1064 (2008). https://doi.org/10.1007/s00775-008-0389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0389-0

Keywords

Navigation