Skip to main content
Log in

“Iron priming” guides folding of denatured aporubredoxins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The relationship between iron uptake by aporubredoxins (apoRds) and formation of native holorubredoxins (holoRd), including their Fe(SCys)4 sites, was studied. In the absence of denaturants, apoRds exhibited spectroscopic features consistent with structures very similar to those of the folded holoRds. However, additions of either ferric or ferrous salts to the apoRds in the absence of denaturants gave less than 40% recovery of the native holoRd circular dichroism and UV–vis spectroscopic features. In the presence of either 6 M urea or 6 M guanidine hydrochloride, the nativelike structural features of the apoRds were absent. Nevertheless, nearly quantitative recoveries of the native holoRd spectroscopic features were achieved by addition of either ferric or ferrous salts to the denatured apoRds without diluting the denaturant. Consistent with this observation, the native spectroscopic features were unaffected by addition of the same denaturant concentrations to the as-isolated holoRds. Denaturing concentrations of urea or guanidine hydrochloride also increased the rates of holoRd recoveries from apoRds and ferrous salts. Mass spectrometry confirmed that ferric iron binding to the denatured apoRds precedes the recoveries of protein secondary structures and Fe(SCys)4 sites. Thus, iron binding to the apoRds guides, both kinetically and thermodynamically, refolding to the native holoRd structures. Our results imply that the ferrous oxidation state would more efficiently drive formation of the native holoRd structure from the nascent apoprotein in vivo, but that the Fe(SCys)4 site must attain the ferric state in order to achieve its native structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

Cp:

Clostridium pasteurianum

ESI:

Electrospray ionization

GuHCl:

Guanidine hydrochoride

MS:

Mass spectrometry

Pf:

Pyrococcus furiosus

Rd:

Rubredoxin

References

  1. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Ann Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  2. Lill R, Muhlenhoff U (2006) Ann Rev Cell Dev Biol 22:457–486

    Article  CAS  Google Scholar 

  3. O’Halloran TV, Culotta VC (2000) J Biol Chem 275:25057–25060

    Article  PubMed  CAS  Google Scholar 

  4. Kuchar J, Hausinger RP (2004) Chem Rev 104:509–525

    Article  PubMed  CAS  Google Scholar 

  5. Lakowski TM, Lee GM, Okon M, Reid RE, McIntosh LP (2007) Protein Sci 16:1119–1132

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka S, Saito K, Chon H, Matsumura H, Koga Y, Takano K, Kanaya S (2007) J Biol Chem 282:8246–8255

    Article  PubMed  CAS  Google Scholar 

  7. Leckner J, Bonander N, Wittung-Stafshede P, Malmstrom BG, Karlsson BG (1997) Biochim Biophys Acta 1342:19–27

    PubMed  CAS  Google Scholar 

  8. Pozdnyakova I, Wittung-Stafshede P (2001) Biochemistry 40:13728–13733

    Article  PubMed  CAS  Google Scholar 

  9. Wilson CJ, Apiyo D, Wittung-Stafshede P (2004) Q Rev Biophys 37:285–314

    Article  PubMed  CAS  Google Scholar 

  10. Blindauer CA, Razi MT, Campopiano DJ, Sadler PJ (2007) J Biol Inorg Chem 12:393–405

    Article  PubMed  CAS  Google Scholar 

  11. Blindauer CA, Sadler PJ (2005) Acc Chem Res 38:62–69

    Article  PubMed  CAS  Google Scholar 

  12. Reddi AR, Gibney BR (2007) Biochemistry 46:3745–3758

    Article  PubMed  CAS  Google Scholar 

  13. Duncan KE, Stillman MJ (2006) J Inorg Biochem 100:2101–2107

    Article  CAS  Google Scholar 

  14. Duncan KE, Ngu TT, Chan J, Salgado MT, Merrifield ME, Stillman MJ (2006) Exp Biol Med 231:1488–1499

    CAS  Google Scholar 

  15. Chen C-J, Lin Y-H, Huang Y-C, Liu M-Y (2006) Biochem Biophys Res Commun 349:79–90

    Article  PubMed  CAS  Google Scholar 

  16. Bertini I, Kurtz DM Jr, Eidsness MK, Liu G, Luchinat C, Rosato A, Scott RA (1998) J Biol Inorg Chem 3:401–410

    Article  CAS  Google Scholar 

  17. Richie KA, Teng Q, Elkin CJ, Kurtz DM Jr 1996 Protein Sci 5:883–894

    Article  PubMed  CAS  Google Scholar 

  18. Taylor PK, Parks BA, Kurtz DM. Jr, Amster IJ (2001) J Biol Inorg Chem 6:201–206

    Article  PubMed  CAS  Google Scholar 

  19. Bonomi F, Fessas D, Iametti S, Kurtz DM Jr, Mazzini S (2000) Protein Sci 9:2413–2426

    Article  PubMed  CAS  Google Scholar 

  20. Bonomi F, Burden AE, Eidsness MK, Fessas D, Iametti S, Kurtz DM Jr, Mazzini S, Scott RA, Zeng Q (2002) J Biol Inorg Chem 7:427–436

    Article  PubMed  CAS  Google Scholar 

  21. Lin IJ, Gebel EB, Machonkin TE, Westler WM, Markley JL (2003) J Am Chem Soc 125:1464–1465

    Article  PubMed  CAS  Google Scholar 

  22. Park IY, Eidsness MK, Lin IJ, Gebel EB, Youn B, Harley JL, Machonkin TE, Frederick RO, Markley JL, Smith ET, Ichiye T, Kang C (2004) Proteins 57:618–625

    Article  PubMed  CAS  Google Scholar 

  23. Bonomi F, Eidsness MK, Iametti S, Kurtz DM Jr, Mazzini S, Morleo A (2004) J Biol Inorg Chem 9:297–306

    Article  PubMed  CAS  Google Scholar 

  24. Tan ML, Kang C, Ichiye T (2006) Proteins 62:708–714

    Article  PubMed  CAS  Google Scholar 

  25. Bonomi F, Iametti S, Kurtz DM Jr, Ragg E, Richie KA (1998) J Biol Inorg Chem 3:595–606

    Article  CAS  Google Scholar 

  26. Zartler ER, Jenney FE Jr, Terrell M, Eidsness MK, Adams MW, Prestegard JH (2001) Biochemistry 40:7279–7290

    Article  PubMed  CAS  Google Scholar 

  27. Strop P, Mayo SL (2000) Biochemistry 39:1251–1255

    Article  PubMed  CAS  Google Scholar 

  28. Strop P, Mayo SL (1999) J Am Chem Soc 121:2341–2345

    Article  CAS  Google Scholar 

  29. Eidsness MK, Burden AE, Richie KA, Kurtz DM Jr, Scott RA, Smith ET, Ichiye T, Beard B, Min T, Kang C (1999) Biochemistry 38:14803–14809

    Article  PubMed  CAS  Google Scholar 

  30. Eidsness MK, Richie KA, Burden AE, Kurtz DM Jr, Scott RA (1997) Biochemistry 36:10406–10413

    Article  PubMed  CAS  Google Scholar 

  31. Lowery MD, Guckert JA, Gebhard MS, Solomon EI (1993) J Am Chem Soc 115:3012–3013

    Article  CAS  Google Scholar 

  32. Christensen HEM, Hammerstad-Pedersen JM, Holm A, Iversen G, Tensen MH, Ulstrup J (1994) Eur J Biochem 224:97–101

    Article  PubMed  CAS  Google Scholar 

  33. Coulter ED, Kurtz DM Jr (2001) Arch Biochem Biophys 394:76–86

    Article  PubMed  CAS  Google Scholar 

  34. Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Proc Natl Acad Sci USA 93:8836–8840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funds from the University of Milan (FIRST, to F.B.) and US National Institutes of Health grant GM040388 (to D.M.K.). A.M. is the grateful recipient of a postdoctoral fellowship from the University of Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonomi, F., Iametti, S., Ferranti, P. et al. “Iron priming” guides folding of denatured aporubredoxins. J Biol Inorg Chem 13, 981–991 (2008). https://doi.org/10.1007/s00775-008-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0385-4

Keywords

Navigation