Skip to main content
Log in

Synthesis, in vitro and in vivo characterization of 64Cu(I) complexes derived from hydrophilic tris(hydroxymethyl)phosphane and 1,3,5-triaza-7-phosphaadamantane ligands

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Four novel 64Cu complexes ([64Cu(thp)4]+ (1), [64Cu(TPA)4]+ (2), [HC(CO2)(pzMe2)2 64Cu(thp)2] (3) and [HC(CO2)(tz)2 64Cu(thp)2] (4), [where thp is tris(hydroxymethyl)phosphine, TPA is 1,3,5-triaza-7-phosphaadamantane, pzMe2 is 3,5-dimethylpyrazole and tz is 1,2,4-triazole] were successfully synthesized and characterized. The complexes were produced in high radiochemical purity and yield (more than 98%) without the need for further purification. Their logP values and serum stabilities were measured and in vitro behavior was observed in cultured EMT-6 cells. The logP values (± standard deviation) obtained were −2.26 ± 0.04 (1), 0.01 ± 0.01 (2), −1.24 ± 0.03 (3) and −2.06 ± 0.03 (4). Complex 3 demonstrated the highest serum stability, with approximately 33% of the complex still intact after 1-h incubation. Complex 2 showed a rapid cell-association with EMT-6 cells, with more than 8.5% association at 2 h. This association was significantly higher (P < 0.001) than for the other three compounds after a 2-h incubation (1, 1.21%; 3, 0.63%; 4, 2.75%). Biodistribution and small-animal positron emission tomography/computed tomography was undertaken with 1 in mice bearing EMT-6 tumors. EMT-6 tumor uptake was high at 1 h (7.71 ± 2.17 %ID/g) and decreased slowly over 24 h (4 h, 4.90 ± 0.78 %ID/g; 24 h, 3.74 ± 0.73 %ID/g). The PET/CT images show that the EMT-6 tumors can be visualized at all time points. In this proof-of-concept study, we have successfully synthesized and characterized a novel series of versatile water-soluble Cu(I) complexes containing monophosphine ligands. We also report the use of 1 as a building block for new radiopharmaceuticals, perhaps the first time such a method has been used in the production of copper radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blower PJ, Lewis JS, Zweit J (1996) Nucl Med Biol 23:957–980

    Article  PubMed  CAS  Google Scholar 

  2. Welch MJ, Redvanly CS (eds) (2003) Handbook of radiopharmaceuticals. Wiley, Chichester

  3. McQuade P, Rowland DJ, Lewis JS, Welch MJ (2005) Curr Med Chem 12:807–818

    Article  PubMed  CAS  Google Scholar 

  4. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Int J Radiat Oncol Biol Phys 55:1233–1238

    Article  PubMed  Google Scholar 

  5. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA (2003) Eur J Nucl Med Mol Imaging 30:844–850

    Article  PubMed  CAS  Google Scholar 

  6. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) J Nucl Med 38:1155–1160

    PubMed  CAS  Google Scholar 

  7. Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, Perlmutter JS, Raichle ME, Bergmann SR (1990) J Nucl Med 31:1989–1996

    PubMed  CAS  Google Scholar 

  8. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) J Nucl Med 40:177–183

    PubMed  CAS  Google Scholar 

  9. Taniuchi H, Fujibayashi Y, Yonekura Y, Konishi J, Yokoyama A (1997) J Nucl Med 38:1130–1134

    PubMed  CAS  Google Scholar 

  10. Young H, Carnochan P, Zweit J, Babich J, Cherry S, Ott R (1994) J Nucl Med 21:336–341

    Article  CAS  Google Scholar 

  11. Berners-Price SJ, Johnson RK, Mirabelli CK, Faucette LF, McCabe FL, Sadler PJ (1987) Inorg Chem 26:3383–3387

    Article  CAS  Google Scholar 

  12. Berners-Price SJ, Sadler PJ (1988) Struct Bonding 70:27–102

    CAS  Google Scholar 

  13. Lewis JS, Zweit J, Blower PJ (1998) Polyhedron 17:513–517

    Article  CAS  Google Scholar 

  14. Lewis JS, Dearling JLJ, Sosabowski JK, Zweit J, Carnochan P, Kelland LR, Coley HM, Blower PJ (2000) Eur J Nucl Med 27:638–646

    Article  PubMed  CAS  Google Scholar 

  15. Lewis JS, Heath SL, Powell AK, Zweit J, Blower PJ (1997) Dalton Trans 855–861

  16. Lewis JS, Zweit J, Dearling JLJ, Rooney BC, Blower PJ (1996) Chem Commun 1093–1094

  17. Marzano C, Pellei M, Alidori S, Brossa A, Gioia Lobbia G, Tisato F, Santini C (2006) J Inorg Biochem 100:299–304

    Article  PubMed  CAS  Google Scholar 

  18. Marzano C, Pellei M, Colavito D, Alidori S, Gioia Lobbia G, Gandin V, Tisato F, Santini C (2006) J Med Chem 49:7317–7324

    Article  PubMed  CAS  Google Scholar 

  19. Marzano C, Gandin V, Pellei M, Colavito D, Papini G, Gioia Lobbia G, Del Giudice E, Porchia M, Tisato F, Santini C (2007) J Med Chem (in press)

  20. Kirillov AM, Smolenski P, Guedes da Silva MFC, Pombeiro AJL (2007) Eur J Inorg Chem 2686–2692

  21. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Nucl Med Biol 24:35–43

    Article  PubMed  CAS  Google Scholar 

  22. Tai YC, Ruangma A, Rowland DJ, Siegel S, Newport DF, Chow PL, Laforest R (2005) J Nucl Med 46:455–463

    PubMed  Google Scholar 

  23. Gill JT, Mayerle JJ, Welcker PS, Lewis DF, Ucko DA, Barton DJ, Stowens D, Lippard SJ (1976) Inorg Chem 15:1155–1168

    Article  CAS  Google Scholar 

  24. Fife DJ, Moore WM, Morse KW (1984) Inorg Chem 23:1684–1691

    Article  CAS  Google Scholar 

  25. Lippard SJ, Mayerle JJ (1972) Inorg Chem 11:753–759

    Article  CAS  Google Scholar 

  26. Schmidbaur H, Adlkofer J, Schwirten KT (1972) Chem Ber 105:3382–3388

    Article  CAS  Google Scholar 

  27. Carty AJ, Anderson WH, Palenik GJ, Schreiber G (1971) Can J Chem 49:761–766

    Article  CAS  Google Scholar 

  28. Cotton FA, Goodgame DML (1960) J Chem Soc 5267–5269

  29. Dines MB (1972) Inorg Chem 11:2949–2952

    Article  CAS  Google Scholar 

  30. Katti KV, Gali H, Smith CJ, Berning DE (1999) Acc Chem Res 32:9–17

    Article  CAS  Google Scholar 

  31. Saravana Bharathi D, Sridhar MA, Shashidhara Prasad J, Samuelson AG (2001) Inorg Chem Commun 4:490–492

    Article  CAS  Google Scholar 

  32. Darensbourg DJ, Decuir TJ, Stafford NW, Robertson JB, Draper JD, Reibenspies JH, Katho A, Joo F (1997) Inorg Chem 36:4218–4226

    Article  CAS  Google Scholar 

  33. Mohr F, Cerrada E, Laguna M (2006) Organometallics 25:644–648

    Article  CAS  Google Scholar 

  34. Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) J Med Chem 48:4161–4171

    Article  PubMed  CAS  Google Scholar 

  35. Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coord Chem Rev 248:955–993

    Article  CAS  Google Scholar 

  36. Alberto R (2003) Eur J Nucl Med Mol Imaging 30:1299–1302

    Article  PubMed  Google Scholar 

  37. Dearling JLJ, Lewis JS, Mullen GED, Welch MJ, Blower PJ (2002) J Biol Inorg Chem 7:249–259

    Article  PubMed  CAS  Google Scholar 

  38. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, Anderson CJ (2004) J Med Chem 47:1465–1474

    Article  PubMed  CAS  Google Scholar 

  39. Spraugue JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, Anderson CJ (2004) Clin Cancer Res 10:8674–8682

    Article  Google Scholar 

  40. Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, Piwnica-Worms D (1992) J Nucl Med 33:1516–1521

    PubMed  CAS  Google Scholar 

  41. Hill BT (1996) Int J Oncol 9:197–203

    CAS  Google Scholar 

  42. Bae KT, Piwnica-Worms D (1997) Q J Nucl Med 41:101–110

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Raffaella Rossin and Amy L. Vāvere for their help and discussions. We are very grateful for the technical assistance of Dawn Werner, Terry Sharp, Lori Strong, Nicole Fettig, Margaret Morris, Amanda Roth, Ann Stroncek and Jerrel Rutlin for animal handling and microPET imaging support, as well as Susan Adams for cell preparation. Thanks also to Tom Voller and the WUSTL cyclotron facility staff for radionuclide production. This work was partially supported by the National Institutes of Health/National Cancer Institute (NIH/NCI) (R24 CA86307). Small-animal PET imaging is supported by an NIH/NCI SAIRP grant (R24 CA86060) with additional support from the Small Animal Imaging Core (SAIC) of the Alvin J. Siteman Cancer Center at Washington University and Barnes-Jewish Hospital. The SAIC is supported by an NIH/NCI Support Grant P30 CA91842.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason S. Lewis or Carlo Santini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alidori, S., Gioia Lobbia, G., Papini, G. et al. Synthesis, in vitro and in vivo characterization of 64Cu(I) complexes derived from hydrophilic tris(hydroxymethyl)phosphane and 1,3,5-triaza-7-phosphaadamantane ligands. J Biol Inorg Chem 13, 307–315 (2008). https://doi.org/10.1007/s00775-007-0322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0322-y

Keywords

Navigation