Skip to main content
Log in

Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d < 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ANS:

8-Anilino-1-naphthalenesulfonic acid

apoZnuA:

Apo form of ZnuA protein from Escherichia coli

CD:

Circular dichroism

CoZnuA:

Co2+-loaded form of ZnuA protein from Escherichia coli

Eco-ZnuA:

ZnuA protein from Escherichia coli

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

Hin-Pzp1:

Zn2+-binding protein from Haemophilus influenzae

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

MBR:

Metal-binding receptor

MF:

Mag-Fura-2

MOPS:

3-(N-Morpholino)propanesulfonic acid

PDB:

Protein Data Bank

PEG:

Poly(ethylene glycol)

PLBP:

Periplasmic ligand-binding proteins

RMSD:

RMS deviation

Spn-PsaA:

Mn2+-binding protein from Streptococcus pneumoniae

Syn-MntC:

Mn2+-binding protein from Synechocystis PCC sp. 6803

Syn-ZnuA:

Zn2+-binding protein from Synechocystis PCC sp. 6803

Tpa-TroA:

Mn2+-binding protein from Treponema pallidum

Tris:

Tris(hydroxymethly)aminomethane

Znu:

Zn2+-specific uptake system

ZnZnuA:

Zn2+-loaded form of ZnuA protein from Escherichia coli

References

  1. Hantke K (2001) Biometals 14:239–249

    Article  PubMed  CAS  Google Scholar 

  2. Hantke K (2005) Curr Opin Microbiol 8:196–202

    Article  PubMed  CAS  Google Scholar 

  3. Patzer SI, Hantke K (1998) Mol Microbiol 28:1199–1210

    Article  PubMed  CAS  Google Scholar 

  4. Lu D, Boyd B, Lingwood CA (1997) J Biol Chem 272:29033–29038

    Article  PubMed  CAS  Google Scholar 

  5. Kim S, Watanabe K, Shirahata T, Watarai M (2004) J Vet Med Sci 66:1059–1063

    Article  PubMed  CAS  Google Scholar 

  6. Claverys J-P (2001) Res Microbiol 152:231–243

    Article  PubMed  CAS  Google Scholar 

  7. Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HD, Smith T (2003) J Mol Biol 333:1061–1069

    Article  PubMed  CAS  Google Scholar 

  8. Wei B, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2007) Biochemistry 46:8734–8743

    Article  PubMed  CAS  Google Scholar 

  9. Tong L, Golden JW, Giedroc DP (2005) Biochemistry 44:8673–8683

    Article  CAS  Google Scholar 

  10. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) Structure 6:1553–1561

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y-H, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Nat Struct Biol 6:628–633

    Article  PubMed  CAS  Google Scholar 

  12. Rukhman V, Anati M, Melamed-Frank M, Adir N (2005) J Mol Biol 348:961–969

    Article  PubMed  CAS  Google Scholar 

  13. Chandra BR, Yogavel M, Sharma A (2007) J Mol Biol 367:970–982

    Article  PubMed  CAS  Google Scholar 

  14. Li H, Jogl G (2007) J Mol Biol 368:1358–1366

    Article  PubMed  CAS  Google Scholar 

  15. Lee Y-H, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) J Bacteriol 184:2300–2304

    Article  PubMed  CAS  Google Scholar 

  16. Ledvina PS, Tsai AL, Wang Z, Koehl E, Quiocho FA (1998) Protein Sci 7:2550–2559

    PubMed  CAS  Google Scholar 

  17. Mao B, Pear MR, McCammon JA, Quiocho FA (1982) J Biol Chem 257:1131–1133

    PubMed  CAS  Google Scholar 

  18. Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Biochemistry 31:10657–10663

    Article  PubMed  CAS  Google Scholar 

  19. Hazlett KRO, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD (2003) J Biol Chem 278:20687–20694

    Article  PubMed  CAS  Google Scholar 

  20. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    CAS  Google Scholar 

  21. Sheldrick G, Schneider T (1997) Methods Enzymol 277:319–343

    CAS  PubMed  Google Scholar 

  22. Grosse-Kunstleve RW, Adams PD (2003) Acta Crystallogr Sect D 59:1966–1973

    Article  CAS  Google Scholar 

  23. de La Fortelle E, Bricogne G (1997) Methods Enzymol 276:472–494

    Google Scholar 

  24. Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  25. McRee DE (1999) J Struct Biol 125:156–165

    Article  PubMed  CAS  Google Scholar 

  26. Emsley PKC (2004) Acta Crystallogr Sect D 60:2126–2132

    Article  CAS  Google Scholar 

  27. Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges N, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr Sect D 54:905–921

    Article  Google Scholar 

  28. 4 CCPN (1994) Acta Crystallogr Sect D 50:760–763

    Article  Google Scholar 

  29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  30. Storoni LC, McCoy AJ, Read RJ (2004) Acta Crystallogr Sect D 60:432–438

    Article  CAS  Google Scholar 

  31. Kleywegt GJ, Jones TA (1994) CCP4/ESF-EACBM Newsl Protein Crystallogr 31:9–14

    Google Scholar 

  32. Ramsay GD, Eftink M (1994) Methods Enzymol 240:615–645

    Article  PubMed  CAS  Google Scholar 

  33. Liu J, Stemmler AJ, Fatima J, Mitra B (2005) Biochemistry 44:5159–5167

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Biochemistry 45:763–772

    Article  PubMed  CAS  Google Scholar 

  35. Dutta SJ, Liu J, Hou Z, Mitra B (2006) Biochemistry 45:5923–5931

    Article  PubMed  CAS  Google Scholar 

  36. Walkup GK, Imperiali B (1997) J Am Chem Soc 119:3443–3450

    Article  CAS  Google Scholar 

  37. Kuzmic P (1996) Anal Biochem 237:260–273

    Article  PubMed  CAS  Google Scholar 

  38. Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84

    Article  PubMed  CAS  Google Scholar 

  39. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  40. Costello AL, Periyannan G, Yang K-W, Crowder MW, Tierney DL (2006) J Biol Inorg Chem 11:351–358

    Article  PubMed  CAS  Google Scholar 

  41. Thomas PW, Stone EM, Costello AL, Tierney DL, Fast W (2005) Biochemistry 44:7559–7565

    Article  PubMed  CAS  Google Scholar 

  42. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  43. Dudev T, Lim C (2003) Chem Rev 103:773–787

    Article  PubMed  CAS  Google Scholar 

  44. Auld DS (2001) Biometals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  45. Seny D, Heinz U, Wommer S, Kiefer M, Meyer-Klaucke W, Galleni M, Frere J-M, Bauer R, Adolph H-W (2001) J Biol Chem 276:45065–45078

    Article  PubMed  CAS  Google Scholar 

  46. Simons TJ (1993) J Biochem Biophys Methods 27:25–37

    Article  PubMed  CAS  Google Scholar 

  47. Dintlhac A, Alloing G, Granadel C, Claverys J-P (1997) Mol Microbiol 25:727–739

    Article  Google Scholar 

  48. Ippolito JA, Baird TT, McGee SA, Christianson DW, Fierke CA (1995) Proc Natl Acad Sci USA 92:5017–5021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants GM079411 (to M.W.C.), AI056231 and EB001980 (to B. B.), P20RR-16480 (to D.L.T.), and GM58518 (to A.C.R.). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. We thank the staff at the APS DND-CAT, SBC-CAT, and GM/CA-CAT beamlines for assistance with data collection, P. Focia for preliminary data collection, the Northwestern Keck facility for use of the fluorimeter and UV/vis spectrometer, and J. Argüello, E. Eren, B. Mitra, and M. Golynskiy for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael W. Crowder or Amy C. Rosenzweig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 1.65 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatsunyk, L.A., Easton, J.A., Kim, L.R. et al. Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli . J Biol Inorg Chem 13, 271–288 (2008). https://doi.org/10.1007/s00775-007-0320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0320-0

Keywords

Navigation