Skip to main content
Log in

Ternary borate–nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate ester recognition sites on proteins might exhibit significant affinity for nonenzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A (RNase A) in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A·3′-deoxycytidine–2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′-CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate·RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cytidine-2′,3′-cyclic phosphate at pH 7, indicating considerably stronger binding. However, the value is 1,000-fold larger than the reported dissociation constant of the RNase A complex with uridine–vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters supports enzyme catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

cCMB:

Cytidine-2′,3′-cyclic borate

cCMP:

Cytidine-2′,3′-cyclic phosphate

CMB:

3′-Deoxycytidine-2′-monoborate ester

2′-CMP:

Cytidine-2′-monophosphate

3′-CMP:

Cytidine-3′-monophosphate

γGT:

γ-Glutamyl transpeptidase

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

PDB:

Protein Data Bank

RNase A:

Ribonuclease A

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Bertagnolli BL, Hanson JB (1973) Plant Physiol 52:431–435

    PubMed  CAS  Google Scholar 

  2. Gresser MJ (1981) J Biol Chem 256:5981–5983

    PubMed  CAS  Google Scholar 

  3. Moore SA, Moennich DMC, Gresser MJ (1983) J Biol Chem 258:6266–6271

    PubMed  CAS  Google Scholar 

  4. Borah B, Chen CW, Egan W, Miller M, Wlodawer A, Cohen JS (1985) Biochemistry 24:2058–2067

    Article  PubMed  CAS  Google Scholar 

  5. Rehder D, Holst H, Quaas R, Hinrichs W, Hahn U, Saenger W (1989) J Inorg Biochem 37:141–150

    Article  PubMed  CAS  Google Scholar 

  6. Georgalis Y, Zouni A, Hahn U, Saenger W (1991) Biochim Biophys Acta 1118:1–5

    PubMed  CAS  Google Scholar 

  7. Krauss M, Basch H (1992) J Am Chem Soc 114:3630–3634

    Article  CAS  Google Scholar 

  8. Wladkowski BD, Svensson LA, Sjolin L, Ladner JE, Gilliland GL (1998) J Am Chem Soc 120:5488–5498

    Article  CAS  Google Scholar 

  9. Leon-Lai CH, Gresser MJ, Tracey AS (1996) Can J Chem 74:38–48

    Article  CAS  Google Scholar 

  10. Zhang M, Zhou M, VanEtten RL, Stauffacher CV (1997) Biochemistry 36:15–23

    Article  PubMed  CAS  Google Scholar 

  11. Lima CD, Klein MG, Hendrickson WA (1997) Science 278:286–290

    Article  PubMed  CAS  Google Scholar 

  12. Rupert PB, Massey AP, Sigurdsson ST, Ferre-D’Amare AR (2002) Science 298:1421–1424

    Article  PubMed  CAS  Google Scholar 

  13. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) J Biol Chem 272:843–851

    Article  PubMed  CAS  Google Scholar 

  14. Sternweis PC, Gilman AG (1982) Proc Natl Acad Sci USA 79:4888–4891

    Article  PubMed  CAS  Google Scholar 

  15. Maruta S., Henry GD, Sykes BD, Ikebe M (1993) J Biol Chem 268:7093–7100

    PubMed  CAS  Google Scholar 

  16. Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Nature 372:276–279

    Article  PubMed  CAS  Google Scholar 

  17. Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) Biochemistry 34:8960–8972

    Article  PubMed  CAS  Google Scholar 

  18. Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Cell 94:559–571

    Article  PubMed  CAS  Google Scholar 

  19. Coureux P-D, Sweeney HL, Houdusse A (2004) EMBO J 23:4527–4537

    Article  PubMed  CAS  Google Scholar 

  20. Smith KW, Johnson SL (1976) Biochemistry 15:560–565

    Article  PubMed  CAS  Google Scholar 

  21. Kim DH, Marbois BN, Faull KF, Eckhert CD (2003) J Mass Spectrom 38:632–640

    Article  PubMed  CAS  Google Scholar 

  22. Kim DH, Faull KF, Norris AJ, Eckhert CD (2004) J Mass Spectrom 39:743–751

    Article  PubMed  CAS  Google Scholar 

  23. Sugiyama M, Hong Z, Whalen LJ, Greenberg WA, Wong C-H (2006) Adv Synth Catal 348:2555–2559

    Article  CAS  Google Scholar 

  24. Tate SS, Meister A (1978) Proc Natl Acad Sci USA 75:4806–4809

    Article  PubMed  CAS  Google Scholar 

  25. London RE, Gabel SA (2001) Arch Biochem Biophys 385:250–258

    Article  PubMed  CAS  Google Scholar 

  26. London RE, Gabel SA (2002) Biochemistry 41:5963–5967

    Article  PubMed  CAS  Google Scholar 

  27. Transue TR, Krahn JM, Gabel SA, DeRose F, London RE (2004) Biochemistry 43:2829–2839

    Article  PubMed  CAS  Google Scholar 

  28. Babine RE, Rynkiewicz MJ, Jin L, Abdel-Meguid SS (2004) Lett Drug Des Discov 1:35–44

    Article  Google Scholar 

  29. Raines RT (1998) Chem Rev 98:1045–1065

    Article  PubMed  CAS  Google Scholar 

  30. Herries DG, Mathias AP, Rabin BR (1962) Biochem J 85:127–134

    PubMed  CAS  Google Scholar 

  31. Crook EM, Mathias AP, Rabin BR (1960) Biochem J 74:234–238

    PubMed  CAS  Google Scholar 

  32. Coddington JM, Taylor MJ (1989) J Coord Chem 20:27–38

    CAS  Google Scholar 

  33. Baker WR, Kintanar A (1996) Arch Biochem Biophys 327:189–199

    Article  PubMed  CAS  Google Scholar 

  34. Babcock L, Pizer R (1980) Inorg Chem 19:56–61

    Article  CAS  Google Scholar 

  35. Hahn U, Desai-Hahn R, Ruterjans H (1985) Eur J Biochem 146:705–712

    Article  PubMed  CAS  Google Scholar 

  36. El Harrous M, Parody-Morreale A (1997) Anal Biochem 254:96–108

    Article  CAS  Google Scholar 

  37. Perlman ME, Davis DG, Koszalka GW, Tuttle JV, London RE (1994) Biochemistry 33:7547–7559

    Article  PubMed  CAS  Google Scholar 

  38. Lisgarten JN, Gupta V, Maes D, Wyns L, Zegers I, Palmer RA, Dealwis CG, Aguilar CF, Hemmings AM (1993) Acta Crystallogr Sect D 49:541–547

    Article  CAS  Google Scholar 

  39. Zegers I, Maes D, Dao-Thi M-H, Poortmans F, Palmer R, Wyns L (1994) Protein Sci 3:2322–2339

    Article  PubMed  CAS  Google Scholar 

  40. Pizer R, Selzer R (1984) Inorg Chem 23:3023–3026

    Article  CAS  Google Scholar 

  41. Weser U (1967) Z Naturforsch B 22:457–458

    PubMed  CAS  Google Scholar 

  42. Chapelle S, Verchere J-F (1988) Tetrahedron 44:4469–4482

    Article  CAS  Google Scholar 

  43. Antonov AK, Ivanina TV, Berezin IV, Martinek K (1968) Dokl Acad Nauk SSSR 183:1435–1438

    CAS  Google Scholar 

  44. Yonetani T, Theorell H (1964) Arch Biochem Biophys 106:243–251

    Article  PubMed  CAS  Google Scholar 

  45. Transue TR, Gabel SA, London RE (2006) Bioconj Chem 17:300–308

    Article  CAS  Google Scholar 

  46. Oki T, Yoshimoto A, Sato S, Takamatsu A (1975) Biochim Biophys Acta 410:262–272

    PubMed  CAS  Google Scholar 

  47. Reddi KK, Dreiling DA (1982) Clin Biochem 15:109–112

    Article  PubMed  CAS  Google Scholar 

  48. Sharp KA, Friedman RA, Misra V, Hecht J, Honig B (1995) Biopolymers 36:245–262

    Article  PubMed  CAS  Google Scholar 

  49. Bauer C-A, Pettersson G (1974) Eur J Biochem 45:473–477

    Article  PubMed  CAS  Google Scholar 

  50. Dreyer MK, Schulz GE (1996) J Mol Biol 259:458–466

    Article  PubMed  CAS  Google Scholar 

  51. Reuter W, Wiegand G, Huber R, Than ME (1999) Proc Natl Acad Sci USA 96:1363–1368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Yi-chien Lee for providing a preprint of his study of the interaction of 3′-CMP with RNase A. This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabel, S.A., London, R.E. Ternary borate–nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry. J Biol Inorg Chem 13, 207–217 (2008). https://doi.org/10.1007/s00775-007-0311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0311-1

Keywords

Navigation