Skip to main content
Log in

Redox reactivity of the heme Fe3+/Fe2+ couple in native myoglobins and mutants with peroxidase-like activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reaction enthalpy and entropy for the one-electron reduction of the ferric heme in horse heart and sperm whale aquometmyoglobins (Mb) have been determined exploiting a spectroelectrochemical approach. Also investigated were the T67R, T67K, T67R/S92D and T67R/S92D Mb-H variants (the latter containing a protoheme-l-histidine methyl ester) of sperm whale Mb, which feature peroxidase-like activity. The reduction potential (E°′) in all species consists of an enthalpic term which disfavors Fe3+ reduction and a larger entropic contribution which instead selectively stabilizes the reduced form. This behavior differs from that of the heme redox enzymes and electron transport proteins investigated so far. The reduction thermodynamics in the series of sperm whale Mb variants show an almost perfect enthalpy–entropy compensation, indicating that the mutation-induced changes in \( \Delta H^{{{^\circ }\ifmmode{'}\else$'$\fi }}_{{{\text{rc}}}} \;{\text{and }}\Delta S^{{{^\circ }\ifmmode{'}\else$'$\fi }}_{{{\text{rc}}}} {\text{ }} \) are dominated by reduction-induced solvent reorganization effects. The modest changes in E°′ originate from the enthalpic effects of the electrostatic interactions of the heme with the engineered charged residues. The small influence that the mutations exert on the reduction potential of myoglobin suggests that the increased peroxidase activity of the variants is not related to changes in the redox reactivity of the heme iron, but are likely related to a more favored substrate orientation within the distal heme cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cowan JA (1997) Inorganic biochemistry an introduction. Wiley-VCH, New York

    Google Scholar 

  2. Voet D, Voet JG (1995) Biochemistry. Wiley, New York

    Google Scholar 

  3. Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) (2001) Handbook of metalloproteins, vol 1. Wiley, Chichester

  4. Reedy CJ, Gibney BR (2004) Chem Rev 104:617–649

    Article  PubMed  CAS  Google Scholar 

  5. Gray HB, Winkler JR (1996) Annu Rev Biochem 65:537–561

    Article  PubMed  CAS  Google Scholar 

  6. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372

    Article  PubMed  CAS  Google Scholar 

  7. Zhou H-X (1997) J Biol Inorg Chem 2:109–113

    Article  CAS  Google Scholar 

  8. Mauk AG, Moore GR (1997) J Biol Inorg Chem 2:119–125

    Article  CAS  Google Scholar 

  9. Gunner MR, Alexov E, Torres E, Lipovaca S (1997) J Biol Inorg Chem 2:126–134

    Article  CAS  Google Scholar 

  10. Armstrong FA (1997) J Biol Inorg Chem 2:139–142

    Article  Google Scholar 

  11. Warshel A, Papazyan A, Muegge I (1997) J Biol Inorg Chem 2:143–152

    Article  CAS  Google Scholar 

  12. Muegge I, Qi PX, Wand AJ, Chu ZT, Warshel A (1997) J Phys Chem B 101:825–836

    Article  CAS  Google Scholar 

  13. Winkler JR, Wittung-Stafshede P, Lerckner J, Malmström BG, Gray HB (1997) Proc Natl Acad Sci USA 94:4246–4249

    Article  PubMed  CAS  Google Scholar 

  14. Battistuzzi G, Borsari M, Cowan JA, Ranieri A, Sola M (2002) J Am Chem Soc 124:5315–5324

    Article  PubMed  CAS  Google Scholar 

  15. Battistuzzi G, Borsari M, Di Rocco G, Ranieri A, Sola M (2004) J Biol Inorg Chem 9:23–26

    Article  PubMed  CAS  Google Scholar 

  16. Battistuzzi G, Borsari M, Ranieri A, Sola M (2004) J Biol Inorg Chem 9:781–787

    Article  PubMed  CAS  Google Scholar 

  17. Moore GR, Pettigrew GW (1990) Cytochromes c: evolutionary, structural and physicochemical aspects. Springer, Berlin

    Google Scholar 

  18. Wittung-Stafshede P, Gomez E, Ohman A, Aasa R, Villahermosa RM, Leckner J, Karlsson BG, Sanders D, Fee JA, Winkler JR, Malmstrom BG, Gray HB, Hill MG (1998) Biochim Biophys Acta 1388:437–443

    PubMed  CAS  Google Scholar 

  19. Eidsness MK, Burden AE, Richie KA, Kurtz DM, Scott RA, Smith ET, Ichiye T, Beard B, Min T, Kang C (1999) Biochemistry 38:14803–14809

    Article  PubMed  CAS  Google Scholar 

  20. Mao J, Hauser K, Gunner MR (2003) Biochemistry 42:9829–9840

    Article  PubMed  CAS  Google Scholar 

  21. Bertrand P, Mbarki O, Asso M, Blanchard L, Guerlesquin F, Tegoni M (1995) Biochemistry 34:11071–11079

    Article  PubMed  Google Scholar 

  22. Battistuzzi G, Borsari M, Francia F, Sola M (1997) Biochemistry 36:16247–16258

    Article  PubMed  CAS  Google Scholar 

  23. Battistuzzi G, Borsari M, Loschi L, Sola M (1999) J Biol Inorg Chem 4:601–607

    Article  PubMed  CAS  Google Scholar 

  24. Battistuzzi G, Borsari M, Rossi G, Sola M (1998) Inorg Chim Acta 272:397–402

    Article  Google Scholar 

  25. Battistuzzi G, Borsari M, Cowan JA, Eicken C, Loschi L, Sola M (1999) Biochemistry 38:5553–5562

    Article  PubMed  CAS  Google Scholar 

  26. Terui N, Tachiiri N, Matsuo H, Hasegawa J, Uchiyama S, Kobayashi Y, Igarashi Y, Sambongi Y, Yamamoto Y (2003) J Am Chem Soc 125:13650–13651

    Article  PubMed  CAS  Google Scholar 

  27. Grealis C, Magner E (2003) Langmuir 19:1282–1286

    Article  CAS  Google Scholar 

  28. O’Reilly NJ, Magner E (2005) Langmuir 21:1009–1014

    Article  PubMed  CAS  Google Scholar 

  29. Ivanova EV, Magner E (2005) Electrochem Commun 7:323–327

    Article  CAS  Google Scholar 

  30. Bartalesi I, Bertini I, Di Rocco G, Ranieri A, Rosato A, Vanarotti M, Vasos PR, Viezzoli MS (2004) J Biol Inorg Chem 9:600–608

    Article  PubMed  CAS  Google Scholar 

  31. Duah-Williams L, Hawkridge FM (1999) J Elecroanal Chem 466:177–186

    Article  CAS  Google Scholar 

  32. Ray A, Feng M, Tachikawa H (2005) Langmuir 21:1009–1014

    Article  CAS  Google Scholar 

  33. Bortolotti CA, Battistuzzi G, Borsari M, Facci P, Ranieri A, Sola M (2006) J Am Chem Soc 128:5444–5451

    Article  PubMed  CAS  Google Scholar 

  34. Battistuzzi G, Borsari M, Ranieri A, Sola M (2002) J Am Chem Soc 124:26–27

    Article  PubMed  CAS  Google Scholar 

  35. Battistuzzi G, Bellei M, Borsari M, Di Rocco G, Ranieri A, Sola M (2005) J Biol Inorg Chem 10:643–651

    Article  PubMed  CAS  Google Scholar 

  36. Bellei M, Jakopitsch C, Battistuzzi G, Sola M, Obinger C (2006) Biochemistry 45:4768–4774

    Article  PubMed  CAS  Google Scholar 

  37. Battistuzzi G, Bellei M, De Rienzo F, Sola M (2006) J Biol Inorg Chem 11:586–592

    Article  PubMed  CAS  Google Scholar 

  38. Battistuzzi G, Bellei M, Zederbauer M, Furtmüller P, Sola M, Obinger C (2006) Biochemistry 45:12750–12755

    Article  PubMed  CAS  Google Scholar 

  39. Phillips GN Jr (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, vol 1. Wiley, Chichester, pp 5–15

  40. Roncone R, Monzani E, Nicolis S, Casella L (2004) Eur J Inorg Chem:2203–2213

  41. Brunori M (2001) Trends Biochem Sci 26:21–23

    Article  PubMed  CAS  Google Scholar 

  42. Wittenberg JB, Wittenberg BA (1990) Annu Rev Biochem Biophys Chem 19:217–241

    Article  CAS  Google Scholar 

  43. Nakamura M, Nakamura S (1996) Biophys Biochim Acta 1289:329–335

    Google Scholar 

  44. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Article  PubMed  CAS  Google Scholar 

  45. Ozaki S, Matsui T, Roach MP, Watanabe Y (2000) Coord Chem Rev 198:39–59

    Article  CAS  Google Scholar 

  46. Watanabe Y (2002) Curr Opin Chem Biol 6:1–9

    Article  Google Scholar 

  47. Roncone R, Monzani E, Labò S, Sanangelantoni AM, Casella L (2005) J Biol Inorg Chem 10:11–24

    Article  PubMed  CAS  Google Scholar 

  48. Redaelli C, Monzani E, Santagostini L, Casella L, Sanangelantoni AM, Pierattelli R, Banci L (2002) ChemBioChem 3:226–233

    Article  PubMed  CAS  Google Scholar 

  49. Roncone R, Monzani E, Murtas M, Battaini G, Pennati A, Sanangelantoni AM, Zuccotti S, Bolognesi M, Casella L (2004) Biochem J 377:717–724

    PubMed  CAS  Google Scholar 

  50. Dong S, Niu J, Cotton TM (1995) Methods Enzymol 246:701–735

    Article  PubMed  CAS  Google Scholar 

  51. Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) J Am Chem Soc 101:1131–1137

    Article  CAS  Google Scholar 

  52. Heineman WR, Meckstroth ML, Norris BJ, Su C-H (1979) Bioelectrochem Bioenerg 6:577–585

    Article  CAS  Google Scholar 

  53. Millis CV, Cai D, Stankovic MT, Tien M (1989) Biochemistry 28:8484–8489

    Article  PubMed  CAS  Google Scholar 

  54. Farhangrazi ZS, Fossett ME, Powers LS, Ellis WR Jr (1995) Biochemistry 34:2866–2871

    Article  PubMed  CAS  Google Scholar 

  55. Varadarajan R, Zewert TE, Gray HB, Boxer SG (1989) Science 243:69–71

    Article  PubMed  CAS  Google Scholar 

  56. King BC, Hawkridge FM, Hoffman BM (1992) J Am Chem Soc 114:10603–10608

    Article  CAS  Google Scholar 

  57. Dangi B, Blankman JI, Miller CJ, Volkman BF, Guiles RD (1998) J Phys Chem B 102:8201–8208

    Article  CAS  Google Scholar 

  58. Evans SV, Brayer GD (1990) J Mol Biol 213:885–897

    Article  PubMed  CAS  Google Scholar 

  59. Quillin ML, Arduini RM, Olson JS, Phillips GN Jr (1993) J Mol Biol 234:140–155

    Article  PubMed  CAS  Google Scholar 

  60. Yang F, Phillips GN Jr (1996) J Mol Biol 256:762–774

    Article  PubMed  CAS  Google Scholar 

  61. Maurus R, Overall CM, Bogumil R, Luo Y, Mauk AG, Smith M, Brayer GD (1997) Biochim Biophys Acta 1341:1–13

    PubMed  CAS  Google Scholar 

  62. Sola M, Battistuzzi G, Borsari M (2005) Chemtracts Inorg Chem 18:73–86

    CAS  Google Scholar 

  63. Brunori M, Bourgeois D, Vallone B (2004) J Struct Biol 147:223–234

    Article  PubMed  CAS  Google Scholar 

  64. Cao W, Christian JF, Champion PM, Rosca F, Sage JT (2001) Biochemistry 40:5728–5737

    Article  PubMed  CAS  Google Scholar 

  65. Battistuzzi G, Borsari M, Loschi L, Menziani MC, De Rienzo F, Sola M (2001) Biochemistry 40:6422–6430

    Article  PubMed  CAS  Google Scholar 

  66. Grunwald E, Steel C (1995) J Am Chem Soc 117:5687–5692

    Article  CAS  Google Scholar 

  67. Liu L, Guo Q-X (2001) Chem Rev 101:673–695

    Article  PubMed  CAS  Google Scholar 

  68. Blokzijl W, Engberts JBNF (1993) Angew Chem Int Ed Engl 32:1545–1579

    Article  Google Scholar 

  69. Lumry R, Rajender S (1970) Biopolymers 9:1125–1227

    Article  PubMed  CAS  Google Scholar 

  70. Battistuzzi G, Bellei M, Borsari M, Canters GW, de Waal E, Jeuken LJC, Ranieri A, Sola M (2003) Biochemistry 42:9214–9220

    Article  PubMed  CAS  Google Scholar 

  71. Thanabal V, de Ropp JS, La Mar GN (1988) J Am Chem Soc 110:3027–3035

    Article  CAS  Google Scholar 

  72. de Ropp JS, Sham S, Asokan A, Newmyer S, Ortiz de Montellano P, La Mar GN (2002) J Am Chem Soc 124:11029–11037

    Article  PubMed  CAS  Google Scholar 

  73. Bolognesi M, Rosano C, Losso R, Borassi D, Rizzi M, Wittenberg JB, Boffi A, Ascenzi P (1999) Biophys J 77:1093–1099

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministero dell’Universitá e della Ricerca Scientifica e Tecnologica of Italy and Fondazione Cassa di Risparmio di Modena 16/4/2002 and by the COST D21 action of the European Community (WG D21/0011/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistuzzi, G., Bellei, M., Casella, L. et al. Redox reactivity of the heme Fe3+/Fe2+ couple in native myoglobins and mutants with peroxidase-like activity. J Biol Inorg Chem 12, 951–958 (2007). https://doi.org/10.1007/s00775-007-0267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0267-1

Keywords

Navigation