Skip to main content
Log in

NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2 •− source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2 •− molecule and half a H2O2 molecule per NADH molecule, at rates 3 times those observed for XO (29.2 ± 1.6 and 9.38 ± 0.31 min−1, respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 ± 1.36 μM−1 min−1) was found to be higher than that of the XO specificity constant (1.07 ± 0.09 μM−1 min−1). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2 •− source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2 •− than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFR:

Activity-to-flavin ratio

AO:

Aldehyde oxidase

EPR:

Electron paramagnetic resonance

FAD:

Flavin adenine dinucleotide

ROS:

Reactive oxygen species

Sim:

Simulated

XD:

Xanthine dehydrogenase

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  1. Hille R, Nishino T (1995) FASEB J 9:995–1003

    PubMed  CAS  Google Scholar 

  2. Hille R (2005) Arch Biochem Biophys 433:107–116

    Article  PubMed  CAS  Google Scholar 

  3. Brondino CD, Romao MJ, Moura I, Moura JJG (2006) Curr Opin Chem Biol 10:109–114

    Article  PubMed  CAS  Google Scholar 

  4. Hille R (2006) Eur J Inorg Chem 1913–1926

  5. Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T, Nishino T (1990) J Biol Chem 265:14170–14175

    PubMed  CAS  Google Scholar 

  6. Nishino T, Nishino T (1997) J Biol Chem 272:29859–29864

    Article  PubMed  CAS  Google Scholar 

  7. Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai E (2000) Proc Natl Acad Sci USA 97:10723–10728

    Article  PubMed  CAS  Google Scholar 

  8. Rubbo H, Radi R, Prodanov E (1991) Biochem Biophys Acta 1074:386–391

    PubMed  CAS  Google Scholar 

  9. Hausladen A, Fridovich I (1993) Arch Biochem Biophys 304:479–482

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki YJ, Forman HJ, Sevanian A (1997) Free Radic Biol Med 22:269–285

    Article  PubMed  CAS  Google Scholar 

  11. Babior MB (2000) Am J Med 109:33–44

    Article  PubMed  CAS  Google Scholar 

  12. Nishino T, Nakanishi S, Okamoto K, Mizushima J, Hori H, Iwasaki T, Nishino T, Ichimori K, Nakazawa H (1997) Biochem Soc Trans 25:783–786

    PubMed  CAS  Google Scholar 

  13. Wright RM, Repine JE (1997) Biochem Soc Trans 25:799–804

    PubMed  CAS  Google Scholar 

  14. Harrison R (2002) Free Radic Biol Med 33:774–797

    Article  PubMed  CAS  Google Scholar 

  15. Mira L, Maia L, Barreira L, Manso CF (1995) Arch Biochem Biophys 318:53–58

    Article  PubMed  CAS  Google Scholar 

  16. Sahinoglu T, Stevens CR, Bhatt B, Blake DR (1996) Methods 9:628–634

    Article  PubMed  CAS  Google Scholar 

  17. Godberg BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) J Biol Chem 275:7757–7763

    Article  Google Scholar 

  18. Li H, Samouilov A, Liu X, Zweier JL (2001) J Biol Chem 276:24482–24489

    Article  PubMed  CAS  Google Scholar 

  19. Godberg BLJ, Doel JJ, Durgan J, Eisenthal R, Harrison R (2000) FEBS Lett 475:93–96

    Article  Google Scholar 

  20. Palmer R, Ferrige A, Moncada S (1987) Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  21. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1991) Proc Natl Acad Sci USA 87:1620–1624

    Article  Google Scholar 

  22. Krenitsky TA, Neil SM, Elion GM, Hitchings GH (1972) Arch Biochem Biophys 150:585–599

    Article  PubMed  CAS  Google Scholar 

  23. Komai H, Massey V, Palmer G (1969) J Biol Chem 244:1692–1700

    PubMed  CAS  Google Scholar 

  24. Sanders SA, Eisenthal R, Harrison R (1997) Eur J Biochem 245:541–548

    Article  PubMed  CAS  Google Scholar 

  25. Williamson JR (1966) J Biol Chem 241:5026–5036

    PubMed  CAS  Google Scholar 

  26. Lieber CS (1988) N Engl J Med 319:1639–1650

    Article  PubMed  CAS  Google Scholar 

  27. Lieber CS, Savollainem M (1984) Alcohol Clin Exp Res 8:409–423

    PubMed  CAS  Google Scholar 

  28. Hille R (1996) Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  29. Waud WR, Rajagopalan KV (1976) Arch Biochem Biophys 172:354–364

    Article  PubMed  CAS  Google Scholar 

  30. Maia L, Mira L (2002) Arch Biochem Biophys 400:48–53

    Article  PubMed  CAS  Google Scholar 

  31. Saito T, Nishino T (1989) J Biol Chem 264:10015–10022

    PubMed  CAS  Google Scholar 

  32. Johson JL, Waud WR, Cohen HJ, Rajagopalan KV (1974) J Biol Chem 249:5056–5061

    Google Scholar 

  33. Nishino T, Nishino T, Schopfer LM, Massey V (1989) J Biol Chem 264:2518–2527

    PubMed  CAS  Google Scholar 

  34. Harris CM, Massey V (1997) J Biol Chem 272:8370–8379

    Article  PubMed  CAS  Google Scholar 

  35. Branzoli U, Massey V (1974) J Biol Chem 249:4339–4345

    CAS  Google Scholar 

  36. Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland, London

    Google Scholar 

  37. Fridovich I (1986) In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC, Boca Raton

  38. Hille R, Massey V (1985) In: Spiro TG (ed) Molybdenum enzymes. Wiley, New York, pp 443–518

  39. Palmer G, Massey V (1969) J Biol Chem 244:2614–2620

    PubMed  CAS  Google Scholar 

  40. Bray RC, Vanngard T (1969) Biochem J 114:725–734

    PubMed  CAS  Google Scholar 

  41. Hille R, Hagen WR, Dunham WR (1985) J Biol Chem 260:10569–10575

    PubMed  CAS  Google Scholar 

  42. Bray RC, Barber MJ, Lowe DJ (1978) Biochem J 171:653–658

    PubMed  CAS  Google Scholar 

  43. Gutteridge S, Tanner SJ, Bray RC (1978) Biochem J 175:887–897

    PubMed  CAS  Google Scholar 

  44. Barber MJ, Bray RC, Lowe DJ, Coughlan MP (1976) Biochem J 153:297–307

    PubMed  CAS  Google Scholar 

  45. Barber MJ, Coughlan MP, Kanda M, Rajagopalan KV (1980) Arch Biochem Biophys 201:468–475

    Article  PubMed  CAS  Google Scholar 

  46. Lowe DJ, Lynden-Bell RM, Bray RC (1972) Biochem J 130:239–249

    PubMed  CAS  Google Scholar 

  47. Swann JC, Bray RC (1972) Eur J Biochem 26:407–415

    Article  PubMed  CAS  Google Scholar 

  48. Murray KN, Chaykin S (1966) J Biol Chem 241:3468–3473

    PubMed  CAS  Google Scholar 

  49. Landon EJ, Myles M (1967) Biochem Biophys Acta 143:429–431

    Article  CAS  Google Scholar 

  50. Massey V, Brumby PE, Komai H, Palmer G (1969) J Biol Chem 244:1682–1691

    PubMed  CAS  Google Scholar 

  51. Harrison R (1997) Biochem Soc Trans 25:786–791

    PubMed  CAS  Google Scholar 

  52. Wright RM, McManaman JL, Repine JE (1999) Free Radic Biol Med 26:348–354

    Article  PubMed  CAS  Google Scholar 

  53. Kato S, Kawase T, Alderman J, Inatomi N, Lieber C (1990) Gastroenterology 98:203–210

    PubMed  CAS  Google Scholar 

  54. Chung SSM, Ho ECM, Lam KSL, Chung SK (2003) J Am Soc Nephrol 14:S233–S236

    Article  PubMed  CAS  Google Scholar 

  55. Hunt J, Massey V (1992) J Biol Chem 267:21479–21485

    PubMed  CAS  Google Scholar 

  56. Fridovich I (1970) J Biol Chem 245:4053–4057

    PubMed  CAS  Google Scholar 

  57. Porras AG, Olson JS, Palmer G (1981) J Biol Chem 256:9096–9103

    CAS  Google Scholar 

  58. Esterbauer H, Zollner H (1989) Free Radic Biol Med 7:197–203

    Article  PubMed  CAS  Google Scholar 

  59. Maia L, Vala A, Mira L (2005) Free Radic Res 39:979–986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lurdes Mira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, L., Duarte, R.O., Ponces-Freire, A. et al. NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production. J Biol Inorg Chem 12, 777–787 (2007). https://doi.org/10.1007/s00775-007-0229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0229-7

Keywords

Navigation