Skip to main content

Advertisement

Log in

Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Successful iron acquisition plays a crucial role in bacterial virulence. Numerous Gram-negative pathogenic bacteria have developed a novel heme-acquisition system to steal iron from hosts. This system involves a cell-surface heme receptor, a periplasmic heme-transport protein (HTP) and inner-membrane proteins typical for ATP binding cassette transporters. We have cloned the gene encoding a periplasmic HTP from Pseudomonas aeruginosa, overexpressed it in Escherichia coli and purified it as a 33-kDa His-tagged protein. Heme-staining and heme-content assays reveal that the isolated HTP contains approximately 50% heme-bound and apo forms. The heme is noncovalently attached and can be transferred to apomyoglobin in vitro. Electron paramagnetic resonance and UV–vis spectroscopies indicate a five-coordinate, high-spin, ferric heme in HTP. HTP is reduced by dithionite but not by either dithiothreitol or ascorbate. Fluorescence and circular dichroism spectroscopies indicate a well-ordered structure for the HTP and a conformational change upon heme binding to apo-HTP. This was confirmed by limited proteolysis assays. Apo-HTP binds heme or protoporphyrin IX at 1:1 ratio with high affinity (K d ∼ 1.2 and 14 nM, respectively). A BLASTP search revealed approximately 52 putative bacterial periplasmic heme transporters, which can be grouped into six classes, most of which are associated with pathogenic bacteria. Multiple sequence alignment reveals that these HTPs share low sequence similarity and no conserved common binding motif for heme ligation. However, a tyrosine residue (Y71) is highly conserved in the HTP sequences, which is likely an axial heme ligand in HTPs. Mutagenesis studies support Y71–heme iron ligation in the recombinant HTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

CD:

Circular dichroism

DTT:

Dithiothreitol

EPR:

Electron paramagnetic resonance

HTP:

Periplasmic heme transport protein

Hu:

Heme utilization

IPTG:

Isopropyl β-d-thiogalactoside

KPB:

Potassium phosphate buffer

LB:

Luria–Bertani

NHE:

Normal hydrogen electrode

Ni-NTA:

Nickel nitrilotriacetic acid

NJ:

Neighbor-joining

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Rouault TA (2004) Science 305:1577–1578

    Article  PubMed  CAS  Google Scholar 

  2. Raymond KN, Dertz EA, Kim SS (2003) Proc Natl Acad Sci USA 100:3584–3588

    Article  PubMed  CAS  Google Scholar 

  3. Braun V (2001) Int J Med Microbiol 291:67–69

    Article  PubMed  CAS  Google Scholar 

  4. Ratledge C, Dover LG (2000) Annu Rev Microbiol 54:881–941

    Article  PubMed  CAS  Google Scholar 

  5. Wandersman C, Delepelaire P (2004) Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  6. Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194

    Article  PubMed  CAS  Google Scholar 

  7. Braun V, Braun M (2002) FEBS Lett 529:78–85

    Article  PubMed  CAS  Google Scholar 

  8. Skarr EP, Schneewind O (2004) Microb Infect 6:390–397

    Article  CAS  Google Scholar 

  9. Laham N, Ehrlich R (2004) Immunol Res 30:15–28

    Article  PubMed  CAS  Google Scholar 

  10. Guo M, Harvey I, Yang W, Coghill L, Campopiano DJ, Parkinson JA, MacGillivray RT, Harris WR, Sadler PJ (2003) J Biol Chem 278:2490–2502

    Article  PubMed  CAS  Google Scholar 

  11. Alexeev D, Zhu H, Guo M, Zhong W, Hunter DJ, Yang W, Campopiano DJ, Sadler PJ (2003) Nat Struct Biol 10:297–302

    Article  PubMed  CAS  Google Scholar 

  12. Butler A (2003) Nat Struct Biol 10:240–241

    Article  PubMed  CAS  Google Scholar 

  13. Bullen JJ, Griffiths E (1999) Iron and infection: molecular, physiological and clinical aspects. Wiley, New York

  14. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Science 305:1626–1628

    Article  PubMed  CAS  Google Scholar 

  15. Stojiljkovic I, Hantke K (1992) EMBO J 11:4359–4367

    PubMed  CAS  Google Scholar 

  16. Thompson JM, Jones HA, Perry RD (1999) Infect Immun 67:3879–3892

    PubMed  CAS  Google Scholar 

  17. Wyckoff EE, Duncan D, Torres AG, Mills M, Maase K, Payne SM (1998) Mol Microbiol 28:1139–1152

    Article  PubMed  CAS  Google Scholar 

  18. Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Payne SM (1998) Mol Microbiol 29:1493–1507

    Article  PubMed  CAS  Google Scholar 

  19. Chen CJ, Elkins C, Sparling PF (1998) Infect Immun 66:987–993

    PubMed  CAS  Google Scholar 

  20. Morton DJ, Whitby PW, Jin H, Ren Z, Stull TL (1999) Infect Immun 67:2729–2739

    PubMed  CAS  Google Scholar 

  21. Ochsner UA, Johnson Z, Vasil ML (2000) Microbiology 146(Pt1):185–198

    PubMed  CAS  Google Scholar 

  22. Nienaber A, Hennecke H, Fischer HM (2001) Mol Microbiol 41:787–800

    Article  PubMed  CAS  Google Scholar 

  23. Rio SJ, Osorio CR, Lemos ML (2005) Arch Microbiol 183:347–358

    Article  PubMed  CAS  Google Scholar 

  24. Wandersman C, Stojiljkovic I (2000) Curr Opin Microbiol 3:215–220

    Article  PubMed  CAS  Google Scholar 

  25. Stojiljkovic I, Perkins-Balding D (2002) DNA Cell Biol 21:281–295

    Article  PubMed  CAS  Google Scholar 

  26. Lansky IB, Lukat-Rodgers GS, Block D, Rodgers KR, Ratliff M, Wilks A (2006) J Biol Chem 281:13652–13662

    Article  PubMed  CAS  Google Scholar 

  27. Friedman J, Lad L, Li H, Wilks A, Poulos TL (2004) Biochemistry 43:5239–5245

    Article  PubMed  CAS  Google Scholar 

  28. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT (2005) Cell 122:789–801

    Article  PubMed  CAS  Google Scholar 

  29. Andrews NC (2005) N Engl J Med 353:2508–2509

    Article  PubMed  CAS  Google Scholar 

  30. Rao AU, Carta LK, Lesuisse E, Hamza I (2005) Proc Natl Acad Sci USA 102:4270–4275

    Article  PubMed  CAS  Google Scholar 

  31. Rouault TA (2005) Cell 122:649–651

    Article  PubMed  CAS  Google Scholar 

  32. Goswami T, Rolfs A, Hediger MA (2002) Biochem Cell Biol 80:679–689

    Article  PubMed  CAS  Google Scholar 

  33. Hargrove MS, Barrick D, Olson JS (1996) Biochemistry 35:11293–11299

    Article  PubMed  CAS  Google Scholar 

  34. Genco CA, Dixon DW (2001) Mol Microbiol 39:1–11

    Article  PubMed  CAS  Google Scholar 

  35. Todar F (2005) Todar’s online textbook of bacteriology. http://www.textbookofbacteriology.net

  36. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Laemmli UK (1970) Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  38. Thomas PE, Ryan D, Levin W (1976) Anal Biochem 75:168–176

    Article  PubMed  CAS  Google Scholar 

  39. Paul KG, Theorell H, Akeson A (1953) Acta Chem Scand 7:1284–1287

    Article  CAS  Google Scholar 

  40. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  PubMed  CAS  Google Scholar 

  41. Izadi N, Henry Y, Haladjian J, Goldberg ME, Wandersman C, Delepierre M, Lecroisey A (1997) Biochemistry 36:7050–7057

    Article  PubMed  CAS  Google Scholar 

  42. Teale FW (1959) Biochim Biophys Acta 35:289–291

    Article  PubMed  CAS  Google Scholar 

  43. Di Iorio EE (1981) Methods Enzymol 76:57–72

    PubMed  CAS  Google Scholar 

  44. Deniau C, Gilli R, Izadi-Pruneyre N, Letoffe S, Delepierre M, Wandersman C, Briand C, Lecroisey A (2003) Biochemistry 42:10627–10633

    Article  PubMed  CAS  Google Scholar 

  45. Lamola AA, Asher I, Muller-Eberhard U, Poh-Fitzpatrick M (1981) Biochem J 196:693–698

    PubMed  CAS  Google Scholar 

  46. Whitmore L, Wallace BA (2004) Nucleic Acids Res 32:W668–673

    Article  PubMed  CAS  Google Scholar 

  47. Jacob Blackmon B, Dailey TA, Lianchun X, Dailey HA (2002) Arch Biochem Biophys 407:196–201

    Article  PubMed  CAS  Google Scholar 

  48. Galbraith RA, Sassa S, Kappas A (1985) J Biol Chem 260:12198–12202

    PubMed  CAS  Google Scholar 

  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  50. Kumar S, Tamura K, Nei M (2004) Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  51. McGuffin LJ, Bryson K, Jones DT (2000) Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  52. Guo M, Bhaskar B, Li H, Barrows TP, Poulos TL (2004) Proc Natl Acad Sci USA 101:5940–5945

    Article  PubMed  CAS  Google Scholar 

  53. Zelent B, Kaposi AD, Nucci NV, Sharp KA, Dalosto SD, Wright WW, Vanderkooi JM (2004) J Phys Chem B 108:10317–10324

    Article  CAS  Google Scholar 

  54. Ghosh K, Thompson AM, Goldbeck RA, Shi X, Whitman S, Oh E, Zhiwu Z, Vulpe C, Holman TR (2005) Biochemistry 44:16729–16736

    Article  PubMed  CAS  Google Scholar 

  55. Tsai AL, Kulmacz RJ, Wang JS, Wang Y, Van Wart HE, Palmer G (1993) J Biol Chem 268:8554–8563

    PubMed  CAS  Google Scholar 

  56. Peisach J, Blumberg WE, Ogawa S, Rachmilewitz EA, Oltzik R (1971) J Biol Chem 246:3342–3355

    PubMed  CAS  Google Scholar 

  57. Migita CT, Zhang X, Yoshida T (2003) Eur J Biochem 270:687–698

    Article  PubMed  CAS  Google Scholar 

  58. Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin RL (1990) Nature 344:268–270

    Article  PubMed  CAS  Google Scholar 

  59. Lobley A, Whitmore L, Wallace BA (2002) Bioinformatics 18:211–212

    Article  PubMed  CAS  Google Scholar 

  60. Eakanunkul S, Lukat-Rodgers GS, Sumithran S, Ghosh A, Rodgers KR, Dawson JH, Wilks A (2005) Biochemistry 44:13179–13191

    Article  PubMed  CAS  Google Scholar 

  61. Borths EL, Locher KP, Lee AT, Rees DC (2002) Proc Natl Acad Sci USA 99:16642–16647

    Article  PubMed  CAS  Google Scholar 

  62. Karpowich NK, Huang HH, Smith PC, Hunt JF (2003) J Biol Chem 278:8429–8434

    Article  PubMed  CAS  Google Scholar 

  63. Poulos TL (1996) J Biol Inorg Chem 1:356–359

    Article  CAS  Google Scholar 

  64. Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S, Steinmetz I, Hoffmann JA, Finlay BB, Gorvel JP, Ferrandon D, Ewbank JJ (2003) Embo J 22:1451–1460

    Article  PubMed  CAS  Google Scholar 

  65. Guo M, Harvey I, Campopiano DJ, Sadler PJ (2006) Angew Chem Int Ed Engl 45:2758–2761

    Article  PubMed  CAS  Google Scholar 

  66. Liu Y, Moenne-Loccoz P, Hildebrand DP, Wilks A, Loehr TM, Mauk AG, Ortiz de Montellano PR (1999) Biochemistry 38:3733–3743

    Article  PubMed  CAS  Google Scholar 

  67. Guo M, Sun H, McArdle HJ, Gambling L, Sadler PJ (2000) Biochemistry 39:10023–10033

    Article  PubMed  CAS  Google Scholar 

  68. Twitchett MB, Sykes AG (1999) Eur J Inorg Chem 1999:2105–2115

    Article  Google Scholar 

  69. Que L Jr, Epstein RM (1981) Biochemistry 20:2545–2549

    Article  PubMed  CAS  Google Scholar 

  70. Sato E, Sagami I, Uchida T, Sato A, Kitagawa T, Igarashi J, Shimizu T (2004) Biochemistry 43:14189–13406

    Article  PubMed  CAS  Google Scholar 

  71. Arnoux P, Haser R, Izadi N, Lecroisey A, Delepierre M, Wandersman C, Czjzek M (1999) Nat Struct Biol 6:516–520

    Article  PubMed  CAS  Google Scholar 

  72. Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL, Nagae Y, Muller-Eberhard U (1995) Biochemistry 34:13398–13406

    Article  PubMed  CAS  Google Scholar 

  73. Baker HM, Anderson BF, Baker EN (2003) Proc Natl Acad Sci USA 100:3579–3583

    Article  PubMed  CAS  Google Scholar 

  74. Nowalk AJ, Vaughan KG, Day BW, Tencza SB, Mietzner TA (1997) Biochemistry 36:13054–13059

    Article  PubMed  CAS  Google Scholar 

  75. Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL (2000) Nat Struct Biol 7:876–880

    Article  PubMed  CAS  Google Scholar 

  76. Mowat CG, Rothery E, Miles CS, McIver L, Doherty MK, Drewette K, Taylor P, Walkinshaw MD, Chapman SK, Reid GA (2004) Nat Struct Mol Biol 11:1023–1024

    Article  PubMed  CAS  Google Scholar 

  77. Worrall JA, van Roon AM, Ubbink M, Canters GW (2005) FEBS J 272:2441–2445

    Article  PubMed  CAS  Google Scholar 

  78. Guo M, Sulc F, Ribbe MW, Farmer PJ, Burgess BK (2002) J Am Chem Soc 124:12100–12101

    Article  PubMed  CAS  Google Scholar 

  79. Dolphin D (ed) (1978) The porphyrins, vol 5. Physical chemistry, part C. Academic, New York, pp 320–323

Download references

Acknowledgements

We thank B.R. Singh and his group for allowing us to access their laboratory facilities, X.-S. Tan for EPR measurement and Y.-X. Luan for helping with sequence alignment. We are grateful to J.D. Smith (University of Massachusetts Dartmouth), P.J. Sadler (University of Edinburgh) and H. Li (University of California, Irvine) for their helpful comments. This research was supported by a University of Massachusetts Dartmouth Joseph Healey Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_226_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Y., Guo, M. Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa . J Biol Inorg Chem 12, 735–750 (2007). https://doi.org/10.1007/s00775-007-0226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0226-x

Keywords

Navigation