Skip to main content
Log in

High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 26 July 2005

Abstract

High-resolution crystal structures of Desulfovibrio vulgaris nigerythrin (DvNgr), a member of the rubrerythrin (Rbr) family, demonstrate an approximately 2-Å movement of one iron (Fe1) of the diiron site from a carboxylate to a histidine ligand upon conversion of the mixed-valent ([Fe2(II),Fe1(III)]) to diferrous states, even at cryogenic temperatures. This Glu↔His ligand “toggling” of one iron, which also occurs in DvRbr, thus, appears to be a characteristic feature of Rbr-type diiron sites. Unique features of DvNgr revealed by these structures include redox-induced flipping of a peptide carbonyl that reversibly forms a hydrogen bond to the histidine ligand to Fe1 of the diiron site, an intra-subunit proximal orientation of the rubredoxin-(Rub)-like and diiron domains, and an electron transfer pathway consisting of six covalent and two hydrogen bonds connecting the Rub-like iron with Fe2 of the diiron site. This pathway can account for DvNgr’s relatively rapid peroxidase turnover. The characteristic combination of iron sites together with the redox-dependent iron toggling between protein ligands can account for the selectivity of Rbrs for hydrogen peroxide over dioxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Rbr:

rubrerythrin

Rub:

rubredoxin

Ngr:

nigerythrin

Dv:

Desulfovibrio vulgaris

ENDOR:

Electron-nuclear double resonance

ZnS4Rbr:

Rbr with zinc in the Rub-like site

PEG:

polyethylene glycol

References

  1. deMaré F, Kurtz DM Jr, Nordlund P (1996) Nat Struct Biol 3(6):539–546

    Article  PubMed  Google Scholar 

  2. Jin S et al (2002) J Am Chem Soc 124(33):9845–9855

    Article  CAS  PubMed  Google Scholar 

  3. Coulter ED et al (2000) Inorg Chim Acta 297:231–234

    Article  CAS  Google Scholar 

  4. Sztukowska M et al (2002) Mol Microbiol 44(2):479–488

    Article  CAS  PubMed  Google Scholar 

  5. Tempel W et al (2004) Proteins Struct Funct Bioinform 57(4):878–882

    Article  CAS  Google Scholar 

  6. Fushinobu S, Shoun H, Wakagi T (2003) Biochemistry 42(40):11707–11715

    Article  CAS  PubMed  Google Scholar 

  7. Wakagi T (2003) FEMS Microbiol Lett 222(1):33–37

    Article  CAS  PubMed  Google Scholar 

  8. LeGall J et al (1988) Biochemistry 27:1636–1642

    Article  CAS  PubMed  Google Scholar 

  9. Alban PS, Krieg NR (1998) Can J Microbiol 44:87–91

    Article  CAS  Google Scholar 

  10. Alban PS et al (1998) J Appl Microbiol 85:875–882

    Article  CAS  PubMed  Google Scholar 

  11. Lumppio HL et al (2001) J Bacteriol 183:101–108

    Article  CAS  PubMed  Google Scholar 

  12. Coulter ED, Shenvi NV, Kurtz DM Jr (1999) Biochem Biophys Res Commun 255:317–323

    Article  CAS  PubMed  Google Scholar 

  13. Coulter ED, Kurtz DM Jr (2001) Archives Biochem Biophys 394(1):76–86

    Article  CAS  Google Scholar 

  14. Weinberg MV et al (2004) J Bacteriol 186(23):7888–7895

    Article  CAS  PubMed  Google Scholar 

  15. Dave BC et al (1994) Biochemistry 33(12):3572–3576

    Article  CAS  PubMed  Google Scholar 

  16. Gupta N et al (1995) Biochemistry 34:3310–3318

    Article  CAS  PubMed  Google Scholar 

  17. Smoukov SK et al (2003) Biochemistry 42:6201–6208

    Article  CAS  PubMed  Google Scholar 

  18. Pierik AJ et al (1993) Eur J Biochem 212:237–245

    Article  CAS  PubMed  Google Scholar 

  19. Lumppio HL et al (1997) J Bacteriol 179:4607–4615

    CAS  PubMed  Google Scholar 

  20. Bonomi F, Kurtz DM Jr, Cui X (1996) J Biol Inorg Chem 1:67–72

    Article  CAS  Google Scholar 

  21. Sieker LC et al (2000) J Biol Inorg Chem 5(4):505–513

    Article  CAS  PubMed  Google Scholar 

  22. Li M et al (2003) J Biol Inorg Chem 80:149–155

    Google Scholar 

  23. Jin S et al (2004) J Inorg Biochem 98:786–796

    Article  CAS  PubMed  Google Scholar 

  24. Jin S et al (2004) Biochemistry 43:3204–3213

    Article  CAS  PubMed  Google Scholar 

  25. Park IY et al (2004) J Biol Inorg Chem 9(4):423–428

    Article  CAS  PubMed  Google Scholar 

  26. Eidsness MK et al (1999) Biochemistry 38(45):14803–14809

    Article  CAS  PubMed  Google Scholar 

  27. May A et al (2004) FEMS Microbiol Lett 238(1):249–254

    Article  CAS  PubMed  Google Scholar 

  28. Kennepohl P, Solomon EI (2003) Inorg Chem 42(3):696–708

    Article  CAS  PubMed  Google Scholar 

  29. Seaver LC, Imlay JA (2001) J Bacteriol 183(24):7173–7181

    Article  CAS  PubMed  Google Scholar 

  30. Jones T et al (1991) Acta Cryst A 47:110–119

    Article  Google Scholar 

  31. Brünger AT et al (1998) Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921

    Article  PubMed  Google Scholar 

  32. Kraulis PJ (1991) J App Crystallogr 24:946–950

    Article  Google Scholar 

  33. Gouet P, Robert X, Courcelle E (2003) Nucleic Acids Res 31(13):3320–3323

    Article  CAS  PubMed  Google Scholar 

  34. Merritt EA, Murphy MEP (1994) Acta Crystallogr Sect D Biol Crystallogr 50:869–873

    Article  CAS  Google Scholar 

  35. Bernstein HJ (2000) Trends Biochem Sci 25(297):453–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM40388 (D.M.K.). R.S.D. thanks the Chemistry Department of Babesh-Bolyai University, Cluj-Napoca, Romania, for a leave of absence. The authors would also like to thank B.C. Wang for providing the software ISAS and James Imlay for providing strain JI377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Lanzilotta.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00775-005-0667-z

Ramesh B. Iyer and Radu Silaghi-Dumitrescu contributed equally to this work.

Electronic Supplementary Material

(PDF 149 KB)

Movie

(AVI 1.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, R.B., Silaghi-Dumitrescu, R., Kurtz, D.M. et al. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. J Biol Inorg Chem 10, 407–416 (2005). https://doi.org/10.1007/s00775-005-0650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0650-8

Keywords

Navigation