Skip to main content
Log in

Binding of transition metal complexes to guanine and guanine–cytosine: hydrogen bonding and covalent effects

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional calculations and Atoms in Molecules analysis are used to investigate the role of covalent and hydrogen bondings in determining the binding of transition metal complexes to guanine, and the subsequent effect on pairing with cytosine. Hydrogen bonding is ubiquitous, and typically contributes ca. 10% to overall binding, a value that varies with the coordination site on guanine, as well as metal and ligands. Early transition metals show a clear preference for the O6 position, while later ones prefer N7, the crossover point coming at the vanadium group. Metallation at N7 causes a redistribution of hydrogen bonding strength between guanine and cytosine, but does not greatly affect the overall pairing energy. In contrast, metallation at O6 strongly reduces the pairing energy, as may be expected given the role of O6 in pairing guanine with cytosine. This effect can be quantified using electron density properties, and seems to be due to both electrostatic repulsion from the positive metal centre and a redistribution of electron density within guanine itself. Qualitative agreement with experimental mass spectroscopic results is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shier D, Buttler J, Lewis R (1996) Hole’s human anatomy & physiology. McGraw-Hill, Boston

    Google Scholar 

  2. DiDonato M, Zhang JY, Que L, Sarkar B (2002) J Biol Chem 277:13409–13414

    Article  PubMed  CAS  Google Scholar 

  3. Gordon M, Hollander S (1993) J Med 24:209–265

    PubMed  CAS  Google Scholar 

  4. Clarke MJ, Zhu FC, Frasca DR (1999) Chem Rev 99:2511–2533

    Article  PubMed  CAS  Google Scholar 

  5. Sigel H (1993) Chem Soc Rev 22:255–267

    Article  CAS  Google Scholar 

  6. Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698

    Article  PubMed  CAS  Google Scholar 

  7. Baik MH, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  9. Ghosh P, D’Cruz OJ, Narla RK, Uckun FM (2000) Clin Cancer Res 6:1536–1545

    PubMed  CAS  Google Scholar 

  10. Sava G, Zorzet S, Giraldi T, Mestroni G, Zassinovich G (1984) Eur J Cancer Clin Oncol 20:841–847

    Article  PubMed  CAS  Google Scholar 

  11. Morris RE, Aird RE, Murdoch PD, Chen HM, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) J Med Chem 44:3616–3621

    Article  PubMed  CAS  Google Scholar 

  12. McNae IW, Fishburne K, Habtemariam A, Hunter TM, Melchart M, Wang FY, Walkinshaw MD, Sadler PJ (2004) Chem Commun 1786–1787

  13. Hoke GD, Macia RA, Meunier PC, Bugelski PJ, Mirabelli CK, Rush GF, Matthews WD (1989) Toxicol Appl Pharmacol 100:293–306

    Article  PubMed  CAS  Google Scholar 

  14. Calamai P, Carotti S, Guerri A, Mazzei T, Messori L, Mini E, Orioli P, Speroni GP (1998) Anticancer Drug Des 13:67–80

    PubMed  CAS  Google Scholar 

  15. Katsaros N, Anagnostopoulou A (2002) Crit Rev Oncol Hematol 42:297–308

    Article  PubMed  CAS  Google Scholar 

  16. Sava G, Giraldi T, Mestroni G, Zassinovich G (1983) Chem Biol Interact 45:1–6

    Article  PubMed  CAS  Google Scholar 

  17. Yang P, Wang HF, Gao F, Yang BS (1996) J Inorg Biochem 62:137–145

    Article  PubMed  CAS  Google Scholar 

  18. Jung M, Kerr DE, Senter PD (1997) Arch Pharm 330:173–176

    Article  CAS  Google Scholar 

  19. Carloni P, Sprik M, Andreoni W (2000) J Phys Chem B 104:823–835

    Article  CAS  Google Scholar 

  20. Sigel RKO, Lippert B (1999) Chem Commun 2167–2168

  21. Burda JV, Sponer J, Leszczynski J (2001) Phys Chem Chem Phys 3:4404–4411

    Article  CAS  Google Scholar 

  22. Sigel RKO, Freisinger E, Lippert B (2000) J Biol Inorg Chem 5:287–299

    Article  PubMed  CAS  Google Scholar 

  23. Robertazzi A, Platts JA (2005) Inorg Chem 44:267–274

    Article  PubMed  CAS  Google Scholar 

  24. Burda JV, Sponer J, Leszczynski J, Hobza P (1997) J Phys Chem B 101:9670–9677

    Article  CAS  Google Scholar 

  25. Poater J, Sodupe M, Bertran J, Sola M (2005) Mol Phys 103:163–173

    Article  CAS  Google Scholar 

  26. Baker ES, Manard MJ, Gidden J, Bowers MT (2005) J Phys Chem B 109:4808–4810

    Article  PubMed  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh

  28. Hehre WJ, Ditchfie R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  29. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  31. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem 96:6630–6636

    Article  CAS  Google Scholar 

  33. Bader RFW (1990) Atoms in Molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  35. Bader RFW, Essen H (1984) J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  36. Cotton AF, Wilkinson G, Gaus PL (1995) Basic inorganic chemistry. Wiley, New York

    Google Scholar 

  37. Pelmenschikov A, Zilberberg I, Leszczynski J, Famulari A, Sironi M, Raimondi M (1999) Chem Phys Lett 314:496–500

    Article  CAS  Google Scholar 

  38. Zilberberg IL, Avdeev VI, Zhidomirov GM (1997) J Mol Struct: THEOCHEM 418:73–81

    Article  CAS  Google Scholar 

  39. Yanson IK, Teplitsky AB, Sukhodub LF (1979) Biopolymers 18:1149–1170

    Article  PubMed  CAS  Google Scholar 

  40. Bernersprice SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Sung CM, Mong SM, Sadler PJ, Crooke ST (1986) Cancer Res 46:5486–5493

    PubMed  CAS  Google Scholar 

  41. Howard ST, Lamarche O (2003) J Phys Org Chem 16:133–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Platts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertazzi, A., Platts, J.A. Binding of transition metal complexes to guanine and guanine–cytosine: hydrogen bonding and covalent effects. J Biol Inorg Chem 10, 854–866 (2005). https://doi.org/10.1007/s00775-005-0034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0034-0

Keywords

Navigation