Skip to main content
Log in

A structural model for the adduct between cytochrome c and cytochrome c oxidase

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saraste M (1999) Science 283:1488–1493

    Article  PubMed  CAS  Google Scholar 

  2. Papa S, Capitanio N, Capitanio G (2004) Biochim Biophys Acta 1655:353–364

    Article  PubMed  CAS  Google Scholar 

  3. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  4. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Proc Natl Acad Sci USA 94:10547–10553

    Article  PubMed  CAS  Google Scholar 

  5. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144

    Article  PubMed  CAS  Google Scholar 

  6. Richter OM, Ludwig B (2003) Rev Physiol Biochem Pharmacol 147:47–74

    Article  PubMed  CAS  Google Scholar 

  7. Reincke B, Thony-Meyer L, Dannehl C, Odenwald A, Aidim M, Witt H, Ruterjans H, Ludwig B (1999) Biochim Biophys Acta 1411:114–120

    Article  PubMed  CAS  Google Scholar 

  8. Drosou V, Reincke B, Schneider M, Ludwig B (2002) Biochemistry 41:10629–10634

    Article  PubMed  CAS  Google Scholar 

  9. Harrenga A, Reincke B, Ruterjans H, Ludwig B, Michel H (2000) J Mol Biol 295:667–678

    Article  PubMed  CAS  Google Scholar 

  10. Reincke B, Perez C, Pristovsek P, Lucke C, Ludwig C, Lohr F, Ludwig B, Ruterjans HH (2001) Biochemistry 40:12312–12320

    Article  PubMed  CAS  Google Scholar 

  11. Maneg O, Malatesta F, Ludwig B, Drosou V (2004) Biochim Biophys Acta 1655:274–281

    Article  PubMed  CAS  Google Scholar 

  12. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Eur J Biochem 251:367–373

    Article  PubMed  CAS  Google Scholar 

  13. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) J Biol Chem 273:5132–5136

    Article  PubMed  CAS  Google Scholar 

  14. Drosou V, Malatesta F, Ludwig B (2002) Eur J Biochem 269:2980–2988

    Article  PubMed  CAS  Google Scholar 

  15. Wienk H, Maneg O, Lucke C, Pristovsek P, Lohr F, Ludwig B, Ruterjans H (2003) Biochemistry 42:6005–6012

    Article  PubMed  CAS  Google Scholar 

  16. Dominguez C, Boelens R, Bonvin AMJJ (2003) J Am Chem Soc 125:1731–1737

    Article  PubMed  CAS  Google Scholar 

  17. Drogen-Petit A, Zwahlen C, Peter M, Bonvin AM (2004) J Mol Biol 336:1195–1210

    Article  PubMed  CAS  Google Scholar 

  18. Arnesano F, Banci L, Bertini I, Bonvin AMJJ (2004) Structure 12:669–676

    Article  PubMed  CAS  Google Scholar 

  19. Dominguez C, Bonvin AM, Winkler GS, van Schaik FM, Timmers HT, Boelens R (2004) Structure (Camb) 12:633–644

    Article  CAS  Google Scholar 

  20. Tzakos AG, Fuchs P, van Nuland NA, Troganis A, Tselios T, Deraos S, Matsoukas J, Gerothanassis IP, Bonvin AM (2004) Eur J Biochem 271:3399–3413

    Article  PubMed  CAS  Google Scholar 

  21. Hubbard SJ, Thornton JM (1993) NACCESS computer program, Department of Biochemistry and Molecular Biology, University College London

  22. Lo Conte L, Chothia C, Janin J (1999) J Mol Biol 285:2177–2198

    Article  PubMed  CAS  Google Scholar 

  23. McLendon GL (1988) Acc Chem Res 21:160–167

    Article  CAS  Google Scholar 

  24. Prudencio M, Ubbink M (2004) J Mol Recognit 17:524–539

    Article  PubMed  CAS  Google Scholar 

  25. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372

    Article  PubMed  CAS  Google Scholar 

  26. Maneg O, Ludwig B, Malatesta F (2003) J Biol Chem 278:46734–46740

    Article  PubMed  CAS  Google Scholar 

  27. Flock D, Helms V (2002) Proteins 47:75–85

    Article  PubMed  CAS  Google Scholar 

  28. Roberts VA, Pique ME (1999) J Biol Chem 274:38051–38060

    Article  PubMed  CAS  Google Scholar 

  29. Hildebrandt P, Vanhecke F, Buse G, Soulimane T, Mauk AG (1993) Biochemistry 32:10912–10922

    Article  PubMed  CAS  Google Scholar 

  30. Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G (2002) J Mol Biol 319:501–515

    Article  PubMed  CAS  Google Scholar 

  31. Lange C, Hunte C (2002) Proc Natl Acad Sci USA 99:2800–2805

    Article  PubMed  CAS  Google Scholar 

  32. Pelletier H, Kraut J (1992) Science 258:1748–1755

    Article  PubMed  CAS  Google Scholar 

  33. Williams PA, Fülöp V, Leung Y-C, Moir JWB, Howlett G, Ferguson SJ, Radford SE, Hajdu J (1995) Nat Struct Biol 2:975–982

    Article  PubMed  CAS  Google Scholar 

  34. Banci L, Bertini I, Ciurli S, Dikiy A, Dittmer J, Rosato A, Sciara G, Thompsett A (2002) Chembiochem 3:299–310

    Article  PubMed  CAS  Google Scholar 

  35. Bartalesi I, Bertini I, Hajieva P, Rosato A, Vasos P (2002) Biochemistry 41:5112–5119

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt TR, Wildman DE, Uddin M, Opazo JC, Goodman M, Grossman LI (2005) Proc Natl Acad Sci USA 102:6379–6384

    Article  PubMed  CAS  Google Scholar 

  37. Berry EA, Trumpower BL (1985) J Biol Chem 260:2458–2467

    PubMed  CAS  Google Scholar 

  38. Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schagger H (2004) J Biol Chem 279:5000–5007

    Article  PubMed  CAS  Google Scholar 

  39. Schagger H (2002) Biochim Biophys Acta 1555:154–159

    Article  PubMed  CAS  Google Scholar 

  40. Jorgensen WL, Tirado-Rives J (1998) J Am Chem Soc 110:1657–1666

    Article  Google Scholar 

  41. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  CAS  Google Scholar 

  42. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Alexandre Bonvin for kind assistance with HADDOCK calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Bertini.

Additional information

Protein Data Bank Accession numbers

The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, I., Cavallaro, G. & Rosato, A. A structural model for the adduct between cytochrome c and cytochrome c oxidase. J Biol Inorg Chem 10, 613–624 (2005). https://doi.org/10.1007/s00775-005-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0011-7

Keywords

Navigation