Skip to main content
Log in

Direct observation of multiple protonation states in recombinant human purple acid phosphatase

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

To date, most spectroscopic studies on mammalian purple acid phosphatases (PAPs) have been performed at a single pH, typically pH 5. The catalytic activity of these enzymes is, however, pH dependent, with optimal pH values of 5.5–6.2 (depending on the form). For example, the pH optimum of PAPs isolated as single polypeptides is around pH 5.5, which is substantially lower that of proteolytically cleaved PAPs (ca. pH 6.2). In addition, the catalytic activity of single polypeptide PAPs at their optimal pH values is four to fivefold lower than that of the proteolytically cleaved enzymes. In order to elucidate the chemical basis for the pH dependence of these enzymes, the spectroscopic properties of both the single polypeptide and proteolytically cleaved forms of recombinant human PAP (recHPAP) and their complexes with inhibitory anions have been examined over the pH range 4 to 8. The EPR spectra of both forms of recHPAP are pH dependent and show the presence of three species: an inactive low pH form (pH<pK a,1), an active form (pK a,1<pH<pK a,2), and an inactive high pH form (pH>pK a,2). The pK a,1 values observed by EPR for the single polypeptide and proteolytically cleaved forms are similar to those previously observed in kinetics studies. The spectroscopic properties of the enzyme–phosphate complex (which should mimic the enzyme–substrate complex), the enzyme–fluoride complex, and the enzyme–fluoride–phosphate complex (which should mimic the ternary enzyme–substrate–hydroxide complex) were also examined. EPR spectra show that phosphate binds to the diiron center of the proteolytically cleaved form of the enzyme, but not to that of the single polypeptide form. EPR spectra also show that fluoride binds only to the low pH form of the enzymes, in which it presumably replaces a coordinated water molecule. The binding of fluoride and phosphate to form a ternary complex appears to be cooperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAP:

Purple acid phosphatase

recHPAP:

Recombinant purple acid phosphatase from human placenta

recRPAP:

Recombinant purple acid phosphatase from rat bone

Uf:

Purple acid phosphatase from pig uterine fluids

BSPAP:

Purple acid phosphatase from bovine spleen

PP1:

Protein phosphatase 1

PP2B:

Calcineurin

p-NPP:

para-nitrophenylphosphate

MES:

2-[N-morpholino]ethanesulfonic acid

HEPES:

(N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid])

BSA:

Bovine serum albumine

EPR:

Electron paramagnetic resonance

References

  1. Lange SJ, Que L Jr (1998) Curr Opin Chem Biol 2:159–172

    Google Scholar 

  2. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Nees F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349

    Google Scholar 

  3. Averill BA (2003) In: Que L Jr, Tolman WB (eds) Comprehensive coordination chemistry II. Elsevier, Pergamon

  4. Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B (1995) Science 268:1489–1492

    Google Scholar 

  5. Sträter N, Fröhlich R, Schiemann A, Krebs B, Körner M, Suerbaum H, Witzel H (1992) J Mol Biol 224:511–513

    Google Scholar 

  6. Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW (2005) Proc Natl Acad Sci USA 102:273–278

    Google Scholar 

  7. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL (1999) Structure 7:757–767

    Google Scholar 

  8. Guddat LW, McAlpine AS, Hume D, de Jersey J, Hamilton SE, Martin JL (1999) Acta Crystal D 55:1462–1464

    Google Scholar 

  9. Uppenberg J, Lindqvist F, Svensson C, EkRylander B, Andersson G (1999) J Mol Biol 290:201–211

    Google Scholar 

  10. Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G (1999) J Mol Biol 291:135–147

    Google Scholar 

  11. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, DeJersey J, Cassady AI, Hamilton SE, Hume DA (2000) Bone 27:575–584

    Google Scholar 

  12. Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjoelander J, Lang P, Norgard M, Wang Y, Zhang S-J (2003) J Bone Min Res 18:1912–1915

    Google Scholar 

  13. Ljusberg J, EkRylander B, Andersson G (1999) Biochem J 343:63–69

    Google Scholar 

  14. Hayman AR, Warburton MJ, Pringle JAS, Coles B, Chambers TJ (1989) Biochem J 261:601–609

    Google Scholar 

  15. Sibille J-C, Doi K, Aisen P (1987) J Biol Chem 262:59–62

    Google Scholar 

  16. Ylipahkala H, Halleen JM, Kaija H, Vihko P, Vaananen HK (2003) Biochem Biophys Res Comm 308:320–324

    Google Scholar 

  17. Halleen JM, Raisanen SR, Alatalo SL, Vaananen HK (2003) J Bone Min Res 18:1908–1911

    Google Scholar 

  18. Nuttleman PR, Roberts RM (1990) J Biol Chem 265:12192–12199

    Google Scholar 

  19. Buhi WC, Ducsay CA, Bazer FW, Roberts RM (1982) J Biol Chem 257:1712–1723

    Google Scholar 

  20. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Development 122:3151–3162

    Google Scholar 

  21. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassady AI, Hume DA (2000) J Bone Min Res 15:103–110

    Google Scholar 

  22. Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM (2000) J Histochem Cytochem 48:219–227

    Google Scholar 

  23. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H (2000) Science 287:860–864

    Google Scholar 

  24. Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Immunology 102:103–113

    Google Scholar 

  25. Lang P, Schultzberg M, Andersson G (2001) J Histochem Cytochem 49:379–396

    Google Scholar 

  26. Lord DK, Cross NCP, Bevilacqua MA, Rider SH, Gorman PA, Groves AV, Moss DW, Sheer D, Cox TM (1990) Eur J Biochem 189:287–293

    Google Scholar 

  27. Orlando JL, Zirino T, Quirk BJ, Averill BA (1993) Biochemistry 32:8120–8129

    Google Scholar 

  28. Funhoff EG, Klaassen CHW, Samyn B, Van Beeumen J, Averill BA (2001) Chem Bio Chem 2:355–363

    Google Scholar 

  29. Funhoff EG, Ljusberg J, Wang Y, Andersson G, Averill BA (2001) Biochemistry 40:11614–11622

    Google Scholar 

  30. Mueller EG, Crowder MW, Averill BA, Knowles JR (1993) J Am Chem Soc 115:2974–2975

    Google Scholar 

  31. Vincent JB, Crowder MW, Averill BA (1991) J Biol Chem 266:17737–17740

    Google Scholar 

  32. Merkx M, Pinkse MWH, Averill BA (1999) Biochemistry 38:9914–9925

    Google Scholar 

  33. Pyrz JW, Sage JT, Debrunner PG, Que L Jr (1986) J Biol Chem 261:11015–11020

    Google Scholar 

  34. David SS, Que L Jr (1990) J Am Chem Soc 112:6455–6463

    Google Scholar 

  35. Sage JT, Xia Y-M, Debrunner PG, Keough DT, de Jersey J, Zerner B (1989) J Am Chem Soc 111:7239–7247

    Google Scholar 

  36. Wang Z, Ming L-J, Que L Jr, Vincent JB, Crowder MW, Averill BA (1992) Biochemistry 31:5263–5268

    Google Scholar 

  37. Wang X, Randall CR, True AE, Que L Jr (1996) Biochemistry 35:13946–13954

    Google Scholar 

  38. Yang YS, McCormick JM, Solomon EI (1997) J Am Chem Soc 119:11832–11842

    Google Scholar 

  39. Voegtli WC, White DJ, Reiter NJ, Rusnak F, Rosenzweig AC (2000) Biochemistry 39:15365–15374

    Google Scholar 

  40. Vincent JB, Averill BA (1990) FEBS J 263:265–268

    Google Scholar 

  41. Pinkse MWH, Merkx M, Averill BA (1999) Biochemistry 38:9926–9936

    Google Scholar 

  42. Wang XD, Ho RYN, Whiting AK, Que L Jr (1999) J Am Chem Soc 121:9235–9236

    Google Scholar 

  43. Smoukov SK, Quaroni L, Wang X, Doan PE, Hoffman BM, Que L Jr (2002) J Am Chem Soc 124:2595–2603

    Google Scholar 

  44. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA (1995) Cell 82:507–522

    Google Scholar 

  45. Davis JC, Lin SS, Averill BA (1981) Biochemistry 20:4062–4067

    Google Scholar 

  46. Vogel A, Spener F, Krebs B (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley London

    Google Scholar 

  47. Vincent JB, Crowder MW, Averill BA (1991) Biochemistry 30:3025–3034

    Google Scholar 

  48. True AE, Scarrow RC, Randall CR, Holz RC, Que L Jr (1993) J Am Chem Soc 115:4246–4255

    Google Scholar 

  49. Day EP, David SS, Peterson J, Dunham WR, Bonvoison JJ, Sands RH, Que L Jr (1988) J Biol Chem 263:15561–15567

    Google Scholar 

  50. Dietrich M, Münstermann D, Suerbaum H, Witzel H (1991) Eur J Biochem 199:105–113

    Google Scholar 

  51. Averill BA, Davis JC, Burman S, Zirino T, Sanders-Loehr J, Loehr TM, Sage JT, Debrunner PG (1987) J Am Chem Soc 109:3760–3767

    Google Scholar 

  52. Ek-Rylander B, Barkhem T, Ljusberg J, Ohman L, Andersson KK, Andersson G (1997) Biochem J 321:305–311

    Google Scholar 

  53. Antanaitis BC, Aisen P (1982) J Biol Chem 257:1855–1859

    Google Scholar 

  54. Davis JC, Averill BA (1982) Proc Natl Acad Sci USA 79:4623–4627

    Google Scholar 

  55. Rusnak F, Mertz P (2000) Physiol Rev 80:1483–1521

    Google Scholar 

  56. Mertz P, Yu L, Sikkink R, Rusnak F (1997) J Biol Chem 272:21296–21302

    Google Scholar 

  57. Hoff RH, Mertz P, Rusnak F, Hengge AC (1999) J Am Chem Soc 121:6382–6390

    Google Scholar 

  58. Hengge AC, Martin BL (1997) Biochemistry 36:10185–10191

    Google Scholar 

  59. Martin BL, Graves DJ (1994) Biochim Biophys Acta 1206:136–142

    Google Scholar 

  60. Christianson DW, Cox JD (1999) Annu Rev Biochem 68:33–57

    Google Scholar 

  61. Funhoff EG, Wang Y, Andersson G, Averill BA (2005) FEBS J 272:2968–2977

    Google Scholar 

  62. Wang X, Que L Jr (1998) Biochemistry 37:7813–7821

    Google Scholar 

  63. Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Google Scholar 

  64. Egloff MP, Cohen PTW, Reinemer P, Barford D (1995) J Mol Biol 254:942–959

    Google Scholar 

  65. Dikiy A, Funhoff EG, Averill BA, Ciurli S (2002) J Am Chem Soc 124:13974–13975

    Google Scholar 

  66. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW, Gastinel LN, Habuka N, Chen X, Maldonado F, Barker JE, Bacquet R, Villafranca JE (1995) Nature 378:641–644

    Google Scholar 

  67. Todd MJ, Hausinger RP (2000) Biochemistry 39:5389–5396

    Google Scholar 

  68. Pohjanjoki P, Fabrichniy IP, Kasho VN, Cooperman BS, Goldman A, Baykov AA, Lahti R (2001) J Biol Chem 276:434–441

    Google Scholar 

  69. Chen GJ, Edwards T, Dsouza VM, Holz RC (1997) Biochemistry 36:4278–4286

    Google Scholar 

  70. Harris MN, Ming LJ (1999) FEBS Lett 455:321–324

    Google Scholar 

  71. Kawabe H, Sugiur Y, Terauchi M, Tanaka H (1984) Biochim Biophys Acta 784:81–89

    Google Scholar 

  72. O’Hara A, Sawada H, Kato T, Nakayama T, Yamamoto H, Matsumoto Y (1984) J Biochem 95:67–74

    Google Scholar 

  73. Wang X (1998) PhD Dissertation, University of Minnesota

  74. Merkx M, Averill BA (1998) Biochemistry 37:8490–8497

    Google Scholar 

  75. Merkx M, Averill BA (1999) J Am Chem Soc 121:6683–6689

    Google Scholar 

  76. Gehring S, Fleischhauer P, Behlendorf M, Hüber M, Lorösch J, Haase W, Dietrich M, Witzel H, Löcke R, Krebs B (1996) Inorg Chim Acta 252:13–17

    Google Scholar 

  77. Merkx M, Averill BA (1998) Biochemistry 37:11223–11231

    Google Scholar 

  78. Martin RB (1988) In: Sigel H (ed) Metal ions in biological systems 24. Marcel Dekker Inc, pp 1–57

  79. Kido H, Saito K (1988) J Am Chem Soc 110:3187–3190

    Google Scholar 

  80. Funhoff EG, Bollen M, Averill BA (2004) J Inorg Biochem 99:521–529

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the EU Biotechnology Program (contract B104-CT-98-0385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Averill.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funhoff, E.G., de Jongh, T.E. & Averill, B.A. Direct observation of multiple protonation states in recombinant human purple acid phosphatase. J Biol Inorg Chem 10, 550–563 (2005). https://doi.org/10.1007/s00775-005-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0001-9

Keywords

Navigation