Skip to main content
Log in

Structure and binding of Mg(II) ions and di-metal bridge complexes with biological phosphates and phosphoranes

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 29 October 2004

Abstract

Divalent Mg2+ ions often serve as cofactors in enzyme or ribozyme-catalyzed phosphoryl transfer reactions. In this work, the interaction of Mg2+ ions and di-metal bridge complexes with phosphates, phosphoranes, and other biological ligands relevant to RNA catalysis are characterized with density functional methods. The effect of bulk solvent is treated with two continuum solvation methods (PCM and COSMO) for comparison. The relative binding affinity for different biological ligands to Mg2+ are quantified in different protonation states. The structure and stability of the single-metal and di-metal complexes are characterized, and the changes in phosphate and phosphorane geometry induced by metal ion binding are discussed. Di-metal bridge complexes are a ubiquitous motif and the key factors governing their electrostatic stabilization are outlined. The results presented here provide quantitative characterization of metal ion binding to ligands of importance to RNA catalysis, and lay the groundwork for design of new generation quantum models that can be applied to the full biological enzymatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMPH:

dimethyl hydrogen phosphate

EP:

ethylene phosphate

EPA2−:

methyl(ethylene)phosphorane

EPAH:

methyl(ethylene)(hydrogen)phosphorane

EPH:

ethylene hydrogen phosphate

References

  1. Cowan JA (1998) Chem Rev 98:1067–1087

    Article  CAS  PubMed  Google Scholar 

  2. Takagi Y, Ikeda Y, Taira K (2004) Top Curr Chem 232:213–251

    CAS  Google Scholar 

  3. Strajbl M, Shurki A, Warshel A (2003) Proc Natl Acad Sci USA 100:14834–14839

    Google Scholar 

  4. Florián J, Goodman MF, Warshel A (2003) J Am Chem Soc 125:8163–8177

    Article  PubMed  Google Scholar 

  5. Tiraboschi G, Gresh N, Giessner-Prettre C, Pedersen LG, Deerfield DW (2000) J Comput Chem 21:1011–1039

    Article  CAS  Google Scholar 

  6. Mercero JM, Fowler JE, Ugalde JM (1998) J Phys Chem A 102:7006–7012

    Article  CAS  Google Scholar 

  7. Florián J, Warshel A (1998) J Phys Chem B 102:719–734

    Article  Google Scholar 

  8. Tole P, Lim C (1994) J Am Chem Soc 116:3922–3931

    Google Scholar 

  9. Dejaegere A, Liang XL, Karplus M (1994) J Chem Soc Faraday Trans 90:1763–1767

    Google Scholar 

  10. Range K, McGrath MJ, Lopez X, York DM (2004) J Am Chem Soc 126:1654–1665

    CAS  PubMed  Google Scholar 

  11. Lopez X, Dejaegere A, Karplus M (2001) J Am Chem Soc 123:11755–11763

    Article  CAS  PubMed  Google Scholar 

  12. Mercero JM, Barrett P, Lam CW, Fowler JE, Ugalde JM, Pedersen LG (2000) J Comput Chem 21:43–51

    Article  CAS  Google Scholar 

  13. Fothergill M, Goodman MF, Petruska J, Warshel A (1995) J Am Chem Soc 117:11619–11628

    CAS  Google Scholar 

  14. Cowan JA (1997) J Biol Inorg Chem 2:168–176

    Article  CAS  Google Scholar 

  15. Torres RA, Himo F, Bruice TC, Noodleman L, Lovell T (2003) J Am Chem Soc 125:9861–9867

    Article  CAS  PubMed  Google Scholar 

  16. Schneider B, Kabeláč M, Hobza P (1996) J Am Chem Soc 118:12207–12217

    Article  CAS  Google Scholar 

  17. Cunningham LA, Li J, Lu Y (1998) J Am Chem Soc 120:4518–4519

    Article  CAS  Google Scholar 

  18. Maderia M, Hunsicker LM, DeRose VJ (2000) Biochemistry 39:12113–12120

    Google Scholar 

  19. Scott WG (1999) Q Rev Biophys 32:241–294

    Article  CAS  PubMed  Google Scholar 

  20. Wilson TJ, Lilley DMJ (2002) RNA 8:587–600

    Article  CAS  PubMed  Google Scholar 

  21. Hampel A, Cowan JA (1997) Chem Biol 4:513–517

    Article  CAS  PubMed  Google Scholar 

  22. Smith D, Pace NR (1993) Biochemistry 32:5273–5281

    Google Scholar 

  23. Eckstein F, Bramlage B (1999) Biopolymers 52:147–154

    Article  CAS  PubMed  Google Scholar 

  24. Åqvist J, Warshel A (1990) J Am Chem Soc 112:2860–2868

  25. Shan S, Kravchuk AV, Piccirilli JA, Herschlag D (2001) Biochemistry 40:5161–5171

    CAS  PubMed  Google Scholar 

  26. Takagi Y, Taira K (2002) J Am Chem Soc 124:3850–3852

    Article  CAS  PubMed  Google Scholar 

  27. Bruice TC, Tsubouchi A, Dempcy RO, Olson LP (1996) J Am Chem Soc 118:9867–9875

    Article  CAS  Google Scholar 

  28. Peracchi A, Beigelman L, Scott EC, Uhlenbeck OC, Herschlag D (1997) J Biol Chem 272:26822–26826

    Article  CAS  PubMed  Google Scholar 

  29. Taraszka JA, Li J, Clemmer DE (2000) J Phys Chem B 104:4545–4551

    Article  CAS  Google Scholar 

  30. Warshel A (2003) Annu Rev Biophys Biomol Struct 32:425–443

    Article  CAS  PubMed  Google Scholar 

  31. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    CAS  PubMed  Google Scholar 

  32. Åqvist J, Warshel A (1993) Chem Rev 93:2523–2544

  33. Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467–505

    Article  CAS  PubMed  Google Scholar 

  34. Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080–8090

    Article  CAS  Google Scholar 

  35. Hutter MC, Hughes JM, Reimers JR, Hush NS (1999) J Phys Chem B 103:4906–4915

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003), Gaussian 03 R B01. Gaussian, Pittsburgh

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Helgaker T, Watson M, Handy NC (2000) J Chem Phys 113:9402–9409

    Article  CAS  Google Scholar 

  40. Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047–9052

    Article  CAS  Google Scholar 

  41. Seeger R, Pople JA (1977) J Chem Phys 66:3045–3050

    Article  CAS  Google Scholar 

  42. Curtiss LA, Raghavachari K, Trucks GW (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  43. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    CAS  Google Scholar 

  44. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  45. Mineva T, Russo N, Sicilia E (1998) J Comput Chem 19:290–299

    Article  CAS  Google Scholar 

  46. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  47. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  48. Klamt A (1995) J Phys Chem 99:2224–2229

    CAS  Google Scholar 

  49. Andzelm J, Kölmel C, Klamt A (1995) J Chem Phys 103:9312–9320

    Article  CAS  Google Scholar 

  50. Pierotti RA (1976) Chem Rev 76:717–726

    CAS  Google Scholar 

  51. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  52. Floris FM, Tomasi J, Pascual-Ahuir JL (1991) J Comput Chem 12:784–791

    CAS  Google Scholar 

  53. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  Google Scholar 

  54. Cammi R, Tomasi J (1995) J Comput Chem 16:1449–1458

    CAS  Google Scholar 

  55. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2 2:799–805

    Article  Google Scholar 

  56. York DM, Karplus M (1999) J Phys Chem A 103:11060–11079

    Article  CAS  Google Scholar 

  57. Cramer CJ (2002) Essentials of computational chemistry: theories, models. Wiley, Chichester

    Google Scholar 

  58. Bock CW, Kaufman A, Glusker JP (1994) Inorg Chem 33:419–427

    Google Scholar 

  59. Katz AK, Glusker JP, Beebe SA, Bock CW (1996) J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  60. Pye CC, Rudolph WW (1998) J Phys Chem A 102:9933–9943

    Article  CAS  Google Scholar 

  61. Pavlov M, Siegbahn PEM, Sandström M (1998) J Phys Chem A 102:219–228

    Article  CAS  Google Scholar 

  62. Saito H, Suga H (2002) Nucleic Acids Res 30:5151–5159

    Article  CAS  PubMed  Google Scholar 

  63. Vaidya A, Suga H (2001) Biochemistry 40:7200–7210

    Google Scholar 

  64. Markley JC, Godde F, Sigurdsson ST (2001) Biochemistry 40:13849–13856

    Google Scholar 

  65. Dahm SC, Uhlenbeck OC (1991) Biochemistry 30:9464–9469

    Google Scholar 

  66. Marcus Y (1988) Chem Rev 88:1475–1498

    CAS  Google Scholar 

  67. Dudev T, Lim C (1999) J Phys Chem A 103:8093–8100

    Article  CAS  Google Scholar 

  68. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  69. Zhou D, Taira K (1998) Chem Rev 98:991–1026

    Article  CAS  PubMed  Google Scholar 

  70. Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) J Am Chem Soc 124:5010–5018

    Article  CAS  PubMed  Google Scholar 

  71. Holmes RR (1978) J Am Chem Soc 100:433–446

    CAS  Google Scholar 

  72. Lahiri SD, Zhang G, Dunaway-Mariano D, Allen, KN (2003) Science 299:2067–2071

    Article  CAS  PubMed  Google Scholar 

  73. Li J, Zhu T, Hawkins GD, Winget P, Liotard DA, Cramer CJ, Truhlar DG (1999) Theor Chem Acc 103:9–63

    Article  CAS  Google Scholar 

  74. Hertweck M, Mueller MW (2001) Eur J Biochem 268:4610–4620

    Google Scholar 

  75. Pontius BW, Lott WB, von Hippel PH (1997) Proc Natl Acad Sci USA 94:2290–2294

    Google Scholar 

  76. Torres RA, Bruice TC (1998) Proc Natl Acad Sci USA 95:11077–11082

    Google Scholar 

  77. Sjögren AS, Pettersson E, Sjöberg BM, Strömberg R (1997) Nucleic Acids Res 25:648–653

    Article  PubMed  Google Scholar 

  78. Warnecke JM, Fürste J, Peter H, Wolf-Dietrich E, Volker A, Hartmann RK (1996) Proc Natl Acad Sci USA 93:8924–8928

    Google Scholar 

  79. Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A (1996) Science 274:2065–2069

    Article  CAS  PubMed  Google Scholar 

  80. Murray JB, Szöke H, Szöke A, Scott WG (2000) Mol Cell 5:279–287

    Article  CAS  PubMed  Google Scholar 

  81. Murray JB, Terwey DP, Maloney L, Karpeisky A, Usman N, Beigelman L, Scott WG (1998) Cell 92:665–673

    Article  CAS  PubMed  Google Scholar 

  82. Murray JB, Dunham CM, Scott WG (2002) J Mol Biol 315:121–130

    Article  CAS  PubMed  Google Scholar 

  83. Zhou D, Zhang L, Taira K (1997) Proc Natl Acad Sci USA 94:14343–14348

    Google Scholar 

  84. Kuimelis RG, McLaughlin LW (1996) Biochemistry 35:5308–5317

    Google Scholar 

  85. Murray JB, Scott WG (2000) J Mol Biol 296:33–41

    Article  CAS  PubMed  Google Scholar 

  86. Murray JB, Scott WG (2000) J Mol Biol 304:681

    Article  CAS  Google Scholar 

  87. Hermann T, Auffinger P, Scott WG, Westhof E (1997) Nucleic Acids Res 25:3421–3427

    Article  CAS  PubMed  Google Scholar 

  88. Hermann T, Auffinger P, Westhof E (1998) Eur Biophys J 27:153–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.Y. is grateful for financial support provided by the National Institutes of Health (grant 1R01-GM62248-01A1), and the Army High Performance Computing Research Center (AHPCRC) under the auspices of the Department of the Army, Army Research Laboratory (ARL) under Cooperative Agreement number DAAD19-01-2-0014. Computational resources were provided by the Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrin M. York.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00775-004-0608-2

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayaan, E., Range, K. & York, D.M. Structure and binding of Mg(II) ions and di-metal bridge complexes with biological phosphates and phosphoranes. J Biol Inorg Chem 9, 807–817 (2004). https://doi.org/10.1007/s00775-004-0583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0583-7

Keywords

Navigation