Skip to main content

Advertisement

Log in

The solution structure of rat Aβ-(1–28) and its interaction with zinc ion: insights into the scarcity of amyloid deposition in aged rat brain

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The amyloid β-peptide (Aβ) is a major component of insoluble amyloid deposits in Alzheimer’s disease, and the ability of the β-peptide to exist in different conformations is dependent on residues 1–28 [β-(1–28)]. However, different from humans, no Aβ amyloid deposition has been found in aged rats’ brains. Studying the three-dimensional solution structure of rat Aβ-(1–28) and the binding circumstance of Zn2+ is beneficial to a clear understanding of the potential role of Zn2+ in Alzheimer-associated neuropathogenesis and to suggest why there is no amyloid deposition in aged rats’ brains. Here we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of rat Aβ-(1–28) and the binding constant of Zn2+ to rat Aβ-(1–28). Our results suggest that (1) the three-dimensional solution structure of rat Aβ-(1–28) is more stable than that of human Aβ-(1–28) in DMSO-d 6 and that a helical region from Glu16 to Val24 exists in the rat Aβ-(1–28); (2) the affinity of Zn2+ for rat Aβ-(1–28) is lower than that for human Aβ-(1–28) and the NMR data suggest that Arg13, His6, and His14 residues provide the primary binding sites for Zn2+; and (3) the proper binding of Zn2+ to rat Aβ-(1–28) can induce the peptide to change to a more stable conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aβ:

amyloid β-peptide

AD:

Alzheimer’s disease

hAβ-(1–28):

human Aβ-(1–28)

rAβ-(1-28):

rat Aβ-(1–28)

REM:

restrained energy minimization

References

  1. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zürcher-Neely HA, Heinrikson RL, Ball MJ, Greenberg BD (1993) J Biol Chem 268:3072–3083

    CAS  PubMed  Google Scholar 

  2. Pike CJ, Burdick D, Walencewicz AJ, Glabd CG, Cotman CW (1993) J Neurosci 13:1676–1687

    CAS  PubMed  Google Scholar 

  3. Lorenzo A, Yankner BA (1994) Proc Natl Acad Sci USA 91:12243–12247

    CAS  PubMed  Google Scholar 

  4. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) Eur J Pharmacol 207:367–368

    Article  CAS  PubMed  Google Scholar 

  5. Barrow CJ, Zagorski MG (1991) Science 235:179–182

    Google Scholar 

  6. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Nature 359:322–325

    Article  CAS  PubMed  Google Scholar 

  7. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis DL, Shina S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Bryant K, Lieberburg I, Schenk D (1992) Nature 359:325–327

    Article  CAS  PubMed  Google Scholar 

  8. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LN, Cai XD, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Science 258:126–129

    CAS  PubMed  Google Scholar 

  9. Kelly JW (1998) Curr Opin Struct Biol 8:101–106

    Google Scholar 

  10. Rochet JC, Lansbury PT (2000) Curr Opin Struct Biol 10:60–68

    Google Scholar 

  11. Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Mol Brain Res 10:299–305

    CAS  PubMed  Google Scholar 

  12. Shivers BD, Hilbich C, Multhaup G, Salbaum M, Beyreuther K, Seeburg PH (1988) EMBO J 7:1365–1370

    CAS  PubMed  Google Scholar 

  13. Bush AI, Pettingell WH, Multhaup G, Paradis M, Vonsattel JP, Gussella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Science 265:1464–1467

    CAS  PubMed  Google Scholar 

  14. Liu S, Howlett G, Barrow CJ (1999) Biochemistry 38:9373–9378

    Article  CAS  PubMed  Google Scholar 

  15. Zagorski MG, Barrow CJ (1992) Biochemistry 31:5621–5631

    CAS  PubMed  Google Scholar 

  16. Talafous J, Marcinowski KJ, Klopman G, Zagorski MG (1994) Biochemistry 33:7788–7796

    CAS  PubMed  Google Scholar 

  17. Sorimachi K, Craik DJ (1994) Eur J Biochem 219:237–251

    CAS  PubMed  Google Scholar 

  18. Temussi PA, Tancredi T, Pastore A, Castiglione-Morelli MA (1987) Biochemistry 26:7856–7863

    CAS  PubMed  Google Scholar 

  19. Temussi PA, Picone D, Castiglione-Morelli MA, Motta A, Tancredi T (1989) Biopolymers 28:91–107

    CAS  PubMed  Google Scholar 

  20. Wynants C, Van-Binst G, Lossli HR (1985) Int J Pept Protein Res 25:608–614

    CAS  PubMed  Google Scholar 

  21. Wynants C, Van-Binst G, Lossli HR (1985) Int J Pept Protein Res 25:615–621

    CAS  PubMed  Google Scholar 

  22. Amodeo P, Motta A, Picone D, Saviano G, Tancredi T, Temussi PA (1991) J Magn Reson 95:201–207

    CAS  Google Scholar 

  23. Huang X, Cuajungco MP, Atwood CS, Moir RD, Tanzi RE, Bush AI (2000) J Nutr 130:1488s–1492s

    CAS  PubMed  Google Scholar 

  24. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546–4553

    Google Scholar 

  25. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

  26. Bruker (2000) XWINNMR, version 2.6. Bruker, Rheinstetten

  27. Eccles C, Günter P, Billeter M, Wüthrich K (1991) J Biomol NMR 1:111–130

    PubMed  Google Scholar 

  28. Günter P, Braun W, Wüthrich K (1991) J Mol Biol 217:517–530

    PubMed  Google Scholar 

  29. Günter P, Mumenthaler XXXX, Wüthrich K (1997) J Mol Biol 273:283–298

    PubMed  Google Scholar 

  30. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Ferguson DM, Seibel GL, Singh UC, Weiner PK, Kollman PA (1997) AMBER 5.0. University of California, San Francisco

  31. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486

    PubMed  Google Scholar 

  32. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  33. Soto C, Castaño EM, Frangione B, Inestrosa NC (1995) J Biol Chem 270:3063–3067

    Article  CAS  PubMed  Google Scholar 

  34. Baily PJ, Pace S (2001) Coord Chem Rev 214:91–141

    Article  Google Scholar 

  35. Ratilla EMA, Kostic NM (1988) J Am Chem Soc 110:4427–4428

    CAS  Google Scholar 

  36. Ratilla EMA, Scott BK, Moxness MS, Kostic NM (1990) Inorg Chem 29:918–926

    CAS  Google Scholar 

  37. Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E (2002) J Am Chem Soc 124:5256–5257

    Article  CAS  PubMed  Google Scholar 

  38. Fielding L (2003) Curr Top Med Chem 3:39–53

    CAS  PubMed  Google Scholar 

  39. Espinosa JF, Asensio JL, García JL, Laynez J, Bruix M, Wright C, Siebert HC, Gabius HJ, Cañada FJ, Jiménez-Barbero J (2000) Eur J Biochem 267:3965–3978

    Article  CAS  PubMed  Google Scholar 

  40. Asensio JL, Siebert HC, von der Lieth CW, Laynez J, Bruix M, Soedjanaamadja UM, Beintema JJ, Cañada FJ, Gabius HJ, Jiménez-Barbero J (2000) Proteins 40:218–236

    Article  CAS  PubMed  Google Scholar 

  41. Bush AI, Pettingell WH, Paradis MD, Tanzi RE (1994) J Biol Chem 269:12152–12158

    CAS  PubMed  Google Scholar 

  42. Kozin SA, Zirah S, Rebuffat S, Hoa GHB, Debey P (2001) Biochem Biophys Res Commun 285:959–964

    Article  CAS  PubMed  Google Scholar 

  43. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Master CL, Bush AI, Barnham KJ (2001) J Biol Chem 276:20466–20473

    Article  CAS  PubMed  Google Scholar 

  44. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031

    CAS  PubMed  Google Scholar 

  45. Choo L-PI, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) Biophys J 71:1672–1679

    CAS  PubMed  Google Scholar 

  46. Malinchik SB, Inouye H, Szumowski KE, Kirschner DA (1998) Biophys J 74:537–545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yin Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Yao, Y., Lin, J. et al. The solution structure of rat Aβ-(1–28) and its interaction with zinc ion: insights into the scarcity of amyloid deposition in aged rat brain. J Biol Inorg Chem 9, 627–635 (2004). https://doi.org/10.1007/s00775-004-0556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0556-x

Keywords

Navigation