Skip to main content
Log in

Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In Enterococcus hirae, copper homeostasis is controlled by the cop operon, which encodes the copper-responsive repressor CopY, the copper chaperone CopZ, and two copper ATPases, CopA and CopB. The four genes are under control of CopY, which is a homodimeric zinc protein, [Zn(II)CopY]2. It acts as a copper-responsive repressor: when media copper is raised, CopY is released from the DNA, allowing transcription to proceed. This involves the conversion of [Zn(II)CopY]2 to [Cu(I)2CopY]2, which is no longer able to bind to the promoter. Binding analysis of [Zn(II)CopY]2 to orthologous promoters and to control DNA by surface plasmon resonance analysis defined the consensus sequence TACAnnTGTA as the repressor binding element, or “cop box”, of Gram-positive bacteria. Association and dissociation rates for the CopY–DNA interaction in the absence and presence of added copper were determined. The dissociation rate of [Zn(II)CopY]2 from the promoter was 7.3×10-6 s-1 and was increased to 5×10-5 s-1 in the presence of copper. This copper-induced change may be the underlying mechanism of copper induction. Induction of the cop operon was also assessed in vivo with a biosensor containing a lux reporter system under the control of the E. hirae cop promoter. Half-maximal induction of this biosensor was observed at 5 μM media copper, which delineates the ambient copper concentration to which the cop operon responds in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TCEP:

tris(2-carboxyethyl)phosphine

RU:

response units

TG buffer:

50 mM tris-SO4, pH 7.8, 5% (v/v) glycerol

References

  1. Odermatt A, Suter H, Krapf R, Solioz M (1992) Ann NY Acad Sci 671:484–486

    CAS  PubMed  Google Scholar 

  2. Odermatt A, Suter H, Krapf R, Solioz M (1993) J Biol Chem 268:12775–12779

    CAS  PubMed  Google Scholar 

  3. Odermatt A, Solioz M (1995) J Biol Chem 270:4349–4354

    Article  CAS  PubMed  Google Scholar 

  4. Solioz M, Vulpe C (1996) Trends Biochem Sci 21:237–241

    CAS  PubMed  Google Scholar 

  5. Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) FEBS Lett 445:27–30

    Article  CAS  PubMed  Google Scholar 

  6. Strausak D, Solioz M (1997) J Biol Chem 272:8932–8936

    Article  CAS  PubMed  Google Scholar 

  7. Wunderli-Ye H, Solioz M (1999) Biochem Biophys Res Commun 259:443–449

    Article  CAS  PubMed  Google Scholar 

  8. Himeno T, Imanaka T, Aiba S (1986) J Bacteriol 168:1128–1132

    CAS  PubMed  Google Scholar 

  9. Wittman V, Wong HC (1988) J Bacteriol 170:3206–3212

    CAS  PubMed  Google Scholar 

  10. Cobine PA, George GN, Jones CE, Wickramasinghe WA, Solioz M, Dameron CT (2002) Biochemistry 41:5822–5829

    Article  CAS  PubMed  Google Scholar 

  11. Wimmer R, Herrmann T, Solioz M, Wüthrich K (1999) J Biol Chem 274:22597–22603

    Article  CAS  PubMed  Google Scholar 

  12. Rosenzweig AC (2001) Acc Chem Res 34:119–128

    Article  CAS  PubMed  Google Scholar 

  13. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) Proc Natl Acad Sci USA 97:652–656

    CAS  PubMed  Google Scholar 

  14. Hemmerich P, Sigwart C (1963) Experientia 19:488–489

    CAS  Google Scholar 

  15. Solioz M, Waser M (1990) Biochimie 72:279–283

    CAS  PubMed  Google Scholar 

  16. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) J Bacteriol 169:5101–5112

    PubMed  Google Scholar 

  17. Stoyanov JV, Magnani D, Solioz M (2003) FEBS Lett 546:391–394

    Article  CAS  PubMed  Google Scholar 

  18. Franke S, Grass G, Rensing C, Nies DH (2003) J Bacteriol 185:3804–3812

    Article  PubMed  Google Scholar 

  19. Stoyanov JV, Hobman JL, Brown NL (2001) Mol Microbiol 39:502–512

    Article  CAS  PubMed  Google Scholar 

  20. Outten FW, Outten CE, Hale J, O’Halloran TV (2000) J Biol Chem 275:31024–31029

    CAS  PubMed  Google Scholar 

  21. Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, Baulard AR (2004) Mol Microbiol 51:175–188

    CAS  PubMed  Google Scholar 

  22. Chan AY, Lim BL (2003) J Mol Biol 333:21–31

    Article  CAS  PubMed  Google Scholar 

  23. Multhaup G, Strausak D, Bissig K-D, Solioz M (2001) Biochem Biophys Res Commun 288:172–177

    Article  CAS  PubMed  Google Scholar 

  24. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Science 301:1383–1387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Kristian Raaby Poulsen and Thomas Weber for valuable experimental help and Christopher Rensing for providing the E. coli CopA-knockout strain DW3110. This work was supported by grant 31-68075.02 from the Swiss National Foundation, and by the International Copper Association (M.S.) and the Deutsche Forschungsgemeinschaft DFG (G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Solioz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portmann, R., Magnani, D., Stoyanov, J.V. et al. Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae . J Biol Inorg Chem 9, 396–402 (2004). https://doi.org/10.1007/s00775-004-0536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0536-1

Keywords

Navigation