Skip to main content

Advertisement

Log in

Iron inhibits neurotoxicity induced by trace copper and biological reductants

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The extracellular microenvironment of the brain contains numerous biological redox agents, including ascorbate, glutathione, cysteine and homocysteine. During ischemia/reperfusion, aging or neurological disease, extracellular levels of reductants can increase dramatically owing to dysregulated homeostasis. The extracellular concentrations of transition metals such as copper and iron are also substantially elevated during aging and in some neurodegenerative disorders. Increases in the extracellular redox capacity can potentially generate neurotoxic free radicals from reduction of Cu(II) or Fe(III), resulting in neuronal cell death. To investigate this in vitro, the effects of extracellular reductants (ascorbate, glutathione, cysteine, homocysteine or methionine) on primary cortical neurons was examined. All redox agents except methionine induced widespread neuronal oxidative stress and subsequent cell death at concentrations occurring in normal conditions or during neurological insults. This neurotoxicity was totally dependent on trace Cu (≥0.4 μM) already present in the culture medium and did not require addition of exogenous Cu. Toxicity involved generation of Cu(I) and H2O2, while other trace metals did not induce toxicity. Surprisingly, administration of Fe(II) or Fe(III) (≥2.5 μM) completely abrogated reductant-mediated neurotoxicity. The potent protective activity of Fe correlated with Fe inhibiting reductant-mediated Cu(I) and H2O2 generation in cell-free assays and reduced cellular Cu uptake by neurons. This demonstrates a novel role for Fe in blocking Cu-mediated neurotoxicity in a high reducing environment. A possible pathogenic consequence for these phenomena was demonstrated by abrogation of Fe neuroprotection after pre-exposure of cultures to the Alzheimer’s amyloid beta peptide (Aβ). The loss of Fe neuroprotection against reductant toxicity was greater after treatment with human Aβ1–42 than with human Aβ1–40 or rodent Aβ1–42, consistent with the central role of Aβ1–42 in Alzheimer’s disease. These findings have important implications for trace biometal interactions and free radical-mediated damage during neurodegenerative illnesses such as Alzheimer’s disease and old-age dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer’s disease

Asc:

ascorbate

BC:

bathocuproine disulfonate

Cys:

cysteine

DCF:

2′,7′-dichlorofluorescein

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

FCS:

fetal calf serum

Glut:

glutamate

GSH:

reduced glutathione

GSSG:

oxidized glutathione

Hcys:

homocysteine

ICP-MS:

inductively coupled plasma mass spectrometry

MEM:

minimal essential media

Met:

methionine

MnTMPyP:

manganese tetrakis(1-methyl-4-pyridyl)porphyrin

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. Dringen R (2000) Prog Neurobiol 62:649–671

    CAS  Google Scholar 

  2. Rice M (2000) Trends Neurosci 23:209–216

    Article  CAS  PubMed  Google Scholar 

  3. Hillered L, Nilsson P, Ungerstedt U, Ponten U (1990) Neurosci Lett 113:328–332

    Article  CAS  PubMed  Google Scholar 

  4. Slivka A, Cohen G (1993) Brain Res 608:33–37

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Wallin C, Weber SG, Sandberg M (1999) Brain Res 815:81–88

    Article  CAS  PubMed  Google Scholar 

  6. Wallin C, Weber SG, Sandberg M (1999) J Neurochem 73:1566–1572

    Article  CAS  PubMed  Google Scholar 

  7. Lindgren A, Brattstrom L, Norrving BH, Andersson A, Johansson BB (1995) Stroke 26:795–800

    CAS  PubMed  Google Scholar 

  8. Grunewald RA (1993) Brain Res Brain Res Rev 18:123–133

    CAS  PubMed  Google Scholar 

  9. McCaddon A, Davies G, Hudson P, Tandy S, Cattell H (1998) Int J Geriatr Psych 13:235–239

    Article  CAS  Google Scholar 

  10. Miller JW (1999) Nutr Rev 57:126–129

    CAS  PubMed  Google Scholar 

  11. Ho PI, Collins SC, Dhitavat SO, Ashline DA, Rogers E, Shea TB (2001) J Neurochem 78:249–253

    Article  CAS  PubMed  Google Scholar 

  12. White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R (2001) J Neurochem 76:1509–1520

    Article  CAS  PubMed  Google Scholar 

  13. Welch KD, Davis TZ, Van Eden ME, Aust SD (2002) Free Radical Biol Med 32:577–583

    Article  CAS  Google Scholar 

  14. Wang XF, Cynader MS (2001) J Neurosci 21:3322–3331

    CAS  PubMed  Google Scholar 

  15. Satoh K, Sakagami H (1997) Anticancer Res 17:2181–2184

    CAS  PubMed  Google Scholar 

  16. Deibel MA, Ehmann WD, Markesbery WR (1996) J Neurol Sci 143:137–142

    Article  CAS  PubMed  Google Scholar 

  17. Atwood CS, Moir RD, Huang XD, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MK, Tanzi RE, Bush AI (1998) J Biol Chem 273:12817–12826

    Article  CAS  PubMed  Google Scholar 

  18. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47–52

    CAS  PubMed  Google Scholar 

  19. Sayre LM, Perry G, Smith MA (1999) Curr Opin Chem Biol 3:220–225

    Article  CAS  PubMed  Google Scholar 

  20. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) Neurobiol Dis 6:221–230

    Article  CAS  PubMed  Google Scholar 

  21. Bush AI (2000) Curr Opin Chem Biol 4:184–191

    Article  CAS  PubMed  Google Scholar 

  22. White AR, Cappai R (2003) J Neurosci Res 71:889–897

    Article  CAS  PubMed  Google Scholar 

  23. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y-S, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  24. Winterbourn CC, Peskin AV, Parsons-Mair HN (2002) J Biol Chem 277:1906–1911

    Article  CAS  PubMed  Google Scholar 

  25. Kress GJ, Dineley KE, Reynolds IJ (2002) J Neurosci 22:5848–5855

    CAS  PubMed  Google Scholar 

  26. Stuerenberg HJ (2000) J Neural Transm 107:321–329

    Article  PubMed  Google Scholar 

  27. Gutteridge JMC (1984) Biochem J 218:983–985

    CAS  PubMed  Google Scholar 

  28. Ciuffi M, Cellai C, Franchi-Micheli S, Zilletti L, Ginanneschi M, Chelli M, Papini AM, Paoletti F (1998) Pharmacol Res 38:279–287

    Article  CAS  PubMed  Google Scholar 

  29. White AR, Multhaup G, Galatis D, McKinstry WJ, Parker MW, Pipkorn R, Beyreuther K, Masters CL, Cappai R (2002) J Neurosci 15:365–376

    Google Scholar 

  30. Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li Q-X (2002) J Biol Chem 277:44670–44676

    Article  CAS  PubMed  Google Scholar 

  31. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitakis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Neuron 37:899–909

    CAS  PubMed  Google Scholar 

  32. Hassett R, Kosman DJ (1995) J Biol Chem 270:128–134

    Article  CAS  PubMed  Google Scholar 

  33. Obata T, Yamanaka Y (2002) Arch Pharmacol 365:158–163

    Article  CAS  Google Scholar 

  34. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflic SJ (2001) Nat Genet 28:345–349

    Article  CAS  PubMed  Google Scholar 

  35. Robb SJ, Connor JR (1998) Brain Res 30:125–132

    Article  Google Scholar 

  36. Minotti G, Aust SD (1987) J Biol Chem 262:1098–1104

    CAS  PubMed  Google Scholar 

  37. Youngman RJ, Elstner EF (1981) FEBS Lett 129:265–268

    CAS  PubMed  Google Scholar 

  38. Xu L, Koumenis IL, Tilly JL, Giffard RG (1999) Anesthesiology 91:1036–1046

    Article  CAS  PubMed  Google Scholar 

  39. Simonart T, Degraef C, Stordeur P, Noel JC, Mosselmans R, Van Vooren JP, Parent D, Boelaert JR, Heenen M, Galand P (2001) Free Radical Res 34:221–235

    CAS  Google Scholar 

  40. Gutteridge JMC (1992) Ann Neurol 32:S16–21

    CAS  PubMed  Google Scholar 

  41. Moos T, Morgan EH (1998) J Neurosci Res 54:486–494

    Article  CAS  PubMed  Google Scholar 

  42. Dore S, Goto S, Sampei K, Blackshaw S, Hester LD, Ingi T, Sawa A, Traystman RJ, Koehler RC, Snyder SH (2000) Neuroscience 99:587–592

    Article  CAS  PubMed  Google Scholar 

  43. Huang X, Atwood CS, Cuajungco MP, Hartshorn MA, Tyndall J, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  CAS  PubMed  Google Scholar 

  44. White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R (1999) J Neurosci 19:9170–9179

    CAS  PubMed  Google Scholar 

  45. Opazo C, Huang X, Cherny RA, Moir RA, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308

    Article  CAS  PubMed  Google Scholar 

  46. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Free Radical Biol Med 30:447–450

    Article  CAS  Google Scholar 

  47. Bartzokis G, Tishler TA (2000) Cell Mol Biol (Noisy-Le-Grand) 46:821–833

    Google Scholar 

  48. Lee J-Y, Cole TB, Palmiter RD, Suh SW, Koh J-Y (2002) Proc Natl Acad Sci USA 99:7705–7710

    Article  CAS  PubMed  Google Scholar 

  49. Qian ZM, Wang Q (1998) Brain Res Brain Res Rev 27:257–267

    Article  CAS  PubMed  Google Scholar 

  50. Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Acta Neuropathol 100:111–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the National Health and Medical Research Council of Australia to C.L.M. and R.C. K.B. is supported by the Deutshe Forschungsgemeinschaft and the Bundesministerium fur Forschung und Technologie. X.H. is supported by grants from NIMH/NIH (5 K01 MH02001) and AFAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, A.R., Barnham, K.J., Huang, X. et al. Iron inhibits neurotoxicity induced by trace copper and biological reductants. J Biol Inorg Chem 9, 269–280 (2004). https://doi.org/10.1007/s00775-004-0521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0521-8

Keywords

Navigation