Skip to main content
Log in

Is Ag(I) an adequate probe for Cu(I) in structural copper–metallothionein studies?

The binding features of Ag(I) to mammalian metallothionein 1

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The binding abilities of silver(I) to mammalian MT 1 have been studied and compared with those of copper(I), recently reported [Bofill et al. (2001) J Biol Inorg Chem 6:408–417], with the aim of analyzing the suitability of Ag(I) as a Cu(I) probe in Cu–MT studies. The Zn/Ag replacement in recombinant mouse Zn7–MT 1 and corresponding Zn4-αMT 1 and Zn3-βMT 1 fragments, as well as the stepwise incorporation of Ag(I) to the corresponding apo-MTs, have been followed in parallel by various spectroscopic techniques including electronic absorption (UV–vis), circular dichroism (CD) and electrospray mass spectrometry coupled to capillary zone electrophoresis (CZE-ESI-MS). A comparative analysis of the sets of data obtained in the titration of Zn7–MT 1, Zn4–αMT 1 and Zn3-βMT 1 with AgClO4 at pH 7.5 and 2.5 has led to the reaction pathways followed during the incorporation of silver to these proteins under these specific conditions, disclosing unprecedented stoichiometries and structural features for the species formed. Thus, the Zn/Ag replacement in Zn7–MT 1 at pH 7.5 has revealed the subsequent formation of Ag4Zn5–MT, Ag7Zn3–MT, Ag8Zn3–MT, Ag10Zn2–MT, Ag12Zn1–MT, Ag x –MT, x=14–19, whose structure consists of two additive domains only if Zn(II) remains coordinated to the protein. A second structural role for Zn(II) has been deduced from the different folding found for the Ag x –MT species of the same stoichiometry formed at pH 7.5 or 2.5. Comparison of the binding features of Cu(I) and Ag(I) to the entire MT at pH 7.5 shows that, among all the Μ x Zn y –MT (0≤y<7) species found, only MI 4Zn5–MT [(Zn4)α4Zn1)β] and MI 7Zn3–MT [(Μ3Zn2)α4Zn1)β], which form during the first stages of the Zn(II)/M(I) metal replacement, show comparable 3D structures; thus, they are the only species where Ag(I) ions can be predicted to be an adequate probe for Cu(I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–B.
Scheme 1.
Scheme 2A–C.
Fig. 3A–C.
Scheme 3.
Fig. 4A–D.
Scheme 4A–B.
Fig. 5A–B.
Scheme 5A–B.

Similar content being viewed by others

References

  1. Bofill R, Capdevila M, Cols N, Atrian S, González-Duarte P (2001) J Biol Inorg Chem 6:408–417

    Article  Google Scholar 

  2. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) J Mol Biol 221:1269–1293

    CAS  PubMed  Google Scholar 

  3. González-Duarte P (2003) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 8. Pergamon, New York, in press

  4. Li YJ, Weser U (1992) Inorg Chem 31:5526–5533

    CAS  Google Scholar 

  5. Narula SS, Mehra RK, Winge DR, Armitage IM (1991) J Am Chem Soc 113:9354–9358

    CAS  Google Scholar 

  6. Peterson CW, Narula SS, Armitage IM (1996) FEBS Lett 379:85–93

    CAS  PubMed  Google Scholar 

  7. Bertini I, Hartman HJ, Klein T, Liu G, Luchinat C, Weser U (2000) Eur J Biochem 267:1008–1018

    Article  CAS  PubMed  Google Scholar 

  8. Narula SS, Winge DR, Armitage IM (1993) Biochemistry 32:6773–6787

    CAS  PubMed  Google Scholar 

  9. Mehra RK, Tran KT, Scott GW, Mulhandani P, Saini S (1996) J Inorg Biochem 61:125–142

    Article  CAS  PubMed  Google Scholar 

  10. Stillman MJ (1999) Metal-Based Drugs 6:277–290 and references therein

    Google Scholar 

  11. Nielson KB, Winge DR (1985) J Biol Chem 260:8698–8701 and references therein

    CAS  PubMed  Google Scholar 

  12. Kull FJ, Reed HF, Elgren TE, Ciardelli TL, Wilcox DE (1990) J Am Chem Soc 112:2291–2298

    CAS  Google Scholar 

  13. Li H, Otvos JD (1998) J Inorg Biochem 70:187–194 and references therein

    Article  CAS  PubMed  Google Scholar 

  14. Bofill R, Palacios O, Capdevila M, Cols N, González-Duarte R, Atrian S, González-Duarte P (1999) J Inorg Biochem 73:57–64

    Article  CAS  PubMed  Google Scholar 

  15. Polec K, Palacios O, Capdevila M, González-Duarte P, Lobinski R (2002) Talanta 57:1011–1017

    Article  Google Scholar 

  16. Capdevila M, Cols N, Romero-Isart N, González-Duarte R, Atrian S, González-Duarte P (1997) CMLS Cell Mol Life Sci 53:681–688

    Article  CAS  Google Scholar 

  17. Cols N, Romero-Isart N, Capdevila M, Oliva B, González-Duarte P, González-Duarte R, Atrian S (1997) J Inorg Biochem 68:157–166

    Article  CAS  PubMed  Google Scholar 

  18. Corr JJ, Anacleto JF (1996) Anal Chem 68:2155–2163

    Article  CAS  Google Scholar 

  19. Stillman MJ, (1995) Coord Chem Rev 144:461–571 and references therein

    CAS  Google Scholar 

  20. Jensen LT, Peltier JM, Winge DR (1998) J Biol Inorg Chem 3:627–631

    CAS  Google Scholar 

  21. Gehrig PM, You C, Dallinger R, Gruber C, Brouwer M, Kägi JHR, Hunziker PE (2000) Protein Sci 9:395–402

    CAS  PubMed  Google Scholar 

  22. Polec K, Szpunar J, Palacios O, González-Duarte P, Atrian S, Lobinski R (2001) J Anal At Spectrom 16:567–574

    CAS  Google Scholar 

  23. Domenech J, Palacios O, Villarreal L, González-Duarte P, Capdevila M, Atrian S (2003) FEBS Lett 533:72–78

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Otvos JD (1996) Biochemistry 35:13929–13936

    Article  CAS  PubMed  Google Scholar 

  25. Zelazowski A, Stillman MJ (1992) Inorg Chem 31:3363–3370

    CAS  Google Scholar 

  26. Scheuhammer AM, Cherian MG (1986) Toxicol Appl Pharmacol 82:417–425

    Google Scholar 

  27. Roschitzki B, Vasak M (2002) J Biol Inorg Chem 7:611–616

    CAS  PubMed  Google Scholar 

  28. Winge DR (1991) Methods Enzymol 205:458–469

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported from the corresponding author's laboratory was supported by a grant from the Spanish Ministerio de Ciencia y Tecnología (BQU2001-1976). Dr Sílvia Atrian, who kindly provided us with the recombinant proteins used in this work, acknowledges the Spanish Ministerio de Ciencia y Tecnología for financial support (BIO2000-0910). We also acknowledge the Servei d'Anàlisi Química, Universitat Autònoma de Barcelona (CD, UV–vis) for allocating instrument time and Sandra Mounicou for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar González-Duarte.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, Ò., Polec-Pawlak, K., Lobinski, R. et al. Is Ag(I) an adequate probe for Cu(I) in structural copper–metallothionein studies?. J Biol Inorg Chem 8, 831–842 (2003). https://doi.org/10.1007/s00775-003-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0481-4

Keywords

Navigation