Skip to main content
Log in

Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The non-heme diiron enzyme xylene monooxygenase (XylM) has been shown to hydroxylate hydrocarbons via a hydrogen abstraction–carbon radical recombination mechanism (oxygen rebound). Using the radical clock bicyclo[4.1.0]heptane (norcarane) in a whole-cell assay, and observing the ratio of rearranged 3-(hydroxymethyl)cyclohexene and unrearranged 2-norcaranol products, the lifetime of the substrate radical was determined to be approximately 0.2 ns. The wild-type organism Pseudomonas putida mt-2 and two separate Escherichia coli clones expressing xylMA genes gave similar results. One clone produced the Pseudomonas putida mt-2 XylMA hydroxylase and the other produced Sphingomonas yanoikuyae B1 XylMA hydroxylase. Clones were constructed by inserting genes for xylene monooxygenase and xylene monooxygenase reductase downstream from an IPTG-inducible T7 promoter. Mechanistic investigations using whole-cell assays will facilitate more rapid screening of structure–function relationships and the identification of novel oxygenases. This approach should enable the construction of a picture of the key metalloenzymes and the mechanisms they use in selected parts of the global carbon cycle without requiring the isolation of every protein involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. This paper reported 100% rearrangement of methyl(phenyl)cyclopropane with partially purified AlkB. While these results are consistent with a radical mechanism, a cationic pathway would have also produced the same product distribution

Abbreviations

AlkB:

alkane monooxygenase

CYP:

cytochrome P450

IPTG:

isopropyl-β-d-thiogalactopyranoside

sMMO:

soluble methane monooxygenase

XylM:

xylene monooxygenase

References

  1. Buhler B, Schmid A, Hauer B, Witholt B (2000) J Biol Chem 275:10085–10092

    PubMed  Google Scholar 

  2. Suzuki M, Hayakawa T, Shaw J, Rekik M, Harayama S (1991) J Bacteriol 173:1690–1695

    CAS  PubMed  Google Scholar 

  3. Shanklin J, Whittle E, Fox BG (1994) Biochemistry 33:12787–12794

    CAS  PubMed  Google Scholar 

  4. Smits THM, Rothlisberger M, Witholt B, van Beilen JB (1999) Environ Microbiol 1:307–317

    Article  CAS  PubMed  Google Scholar 

  5. Kiener A (1992) Angew Chem Int Ed Engl 31:774–775

    Google Scholar 

  6. Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) Appl Environ Microbiol 65:2324–2332

    CAS  PubMed  Google Scholar 

  7. Leahy JG, Colwell RR (1990) Microbiol Rev 54:305–315

    CAS  PubMed  Google Scholar 

  8. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  9. Ortiz de Montellano PR (ed) (1995) Cytochrome P450 structure, mechanism, and biochemistry, 2nd edn. Plenum, New York

  10. Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) J Biol Chem 264:10023–10033

    CAS  PubMed  Google Scholar 

  11. White RE, Coon MJ (1980) Annu Rev Biochem 49:315–356

    Google Scholar 

  12. Mansuy D (1987) Pure Appl Chem 59:759–770

    CAS  Google Scholar 

  13. Dawson JJ (1988) Science 240:433–439

    CAS  PubMed  Google Scholar 

  14. Groves JT, Han YZ (1995) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Plenum, New York, pp 3–48

  15. Kellner DG, Hung SC, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641–9644

    Article  CAS  PubMed  Google Scholar 

  16. Schünemann V, Jung C, Terner J, Trautwein AX, Weiss R (2002) J Inorg Biochem 91:586–596

    Article  PubMed  Google Scholar 

  17. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1415

    Article  CAS  PubMed  Google Scholar 

  18. Groves JT (1985) J Chem Ed 62:928–931

    CAS  Google Scholar 

  19. Groves JT (2000) In: Kadish KM, Smith KM, Guilard R (eds)The porphyrin handbook. Academic Press, San Diego, pp 17-40.

  20. Auclair K, Hu Z, Little DM, Ortiz de Montellano PR, Groves JT (2002) J Am Chem Soc 124:6020–6027

    Article  CAS  PubMed  Google Scholar 

  21. Newcomb M, Shen R, Choi SY, Toy PT, Hollenberg PF, Vaz AND, Coon MJ (2000) J Am Chem Soc 122:2677–2686

    Article  CAS  Google Scholar 

  22. Rosenzweig AC, Frederick CA, Lippard SJ, Norlund P (1993) Nature 366:537–543

    Google Scholar 

  23. Priestley ND, Floss HG, Froland WA, Lipscomb JD, Williams PG, Morimoto H (1992) J Am Chem Soc 114:7561–7562

    CAS  Google Scholar 

  24. Valentine AM, Wilkinson B, Liu KE, Komarpanicucci S, Priestley ND, Williams PG, Morimoto H, Floss HG, Lippard SJ (1997) J Am Chem Soc 119:1818–1827

    Article  CAS  Google Scholar 

  25. Valentine AM, LeTadic-Biadatti MH, Toy PH, Newcomb M, Lippard SJ (1999) J Biol Chem 274:10771–10776

    Article  CAS  PubMed  Google Scholar 

  26. Jin Y, Lipscomb JD (2000) Biochim Biophys Acta 1543:47–59

    Article  CAS  PubMed  Google Scholar 

  27. Merkx M, Kopp D, Sasinsky M, Blazyk J, Müller J, Lippard SJ (2001) Angew Chem Int Ed 40:2782–2807

    Article  CAS  Google Scholar 

  28. Brazeau B, Austin RN, Groves JT, Lipscomb JD (2001) J Am Chem Soc 123:11831–11837

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson B, Zhu M, Priestley ND, Nguyen HHT, Morimoto H, Williams PG, Chan SI, Floss HG (1996) J Am Chem Soc 118:921–922

    Article  CAS  Google Scholar 

  30. Elliott SJ, Zhu M, Tso L, Nguyen HHT, Yip JHK, Chan SI (1997) J Am Chem Soc 119:9949–9955

    Article  CAS  Google Scholar 

  31. Huang DS, Wu SH, Wang YS, Yu SSF, Chan SI (2002) ChemBioChem 3:760–765

    Article  CAS  PubMed  Google Scholar 

  32. Basu P, Katterle B, Andersson KK, Dalton H (2003) Biochem J 369:417–427

    Article  CAS  PubMed  Google Scholar 

  33. Katopodis AG, Wimalasena K, Lee J, May SW (1984) J Am Chem Soc 106:7928–7935

    CAS  Google Scholar 

  34. Shanklin J, Achim C, Schmidt H, Fox B, Münck E (1997) Proc Natl Acad Sci USA 94:2981–2986

    Article  CAS  PubMed  Google Scholar 

  35. Peterson J, Basu D, Coon M (1966) J Biol Chem 241:5162–5164

    CAS  PubMed  Google Scholar 

  36. Austin RN, Chang HK, Zylstra G, Groves JT (2000) J Am Chem Soc 122:11747–11748

    Article  CAS  Google Scholar 

  37. Fu H, Newcomb M, Wong CH (1991) J Am Chem Soc 113:5878–5880

    CAS  Google Scholar 

  38. Simmons H, Cairns T, Vladuchick S, Hoiness C (1973) Org React 20:1–131

    CAS  Google Scholar 

  39. Denmark SE, Edwards JP (1991) J Org Chem 56:6974–6981

    CAS  Google Scholar 

  40. Snider B, Rodini D (1980) Tetrahedron Lett 21:1815–1818

    Article  CAS  Google Scholar 

  41. Corey E, Suggs W (1975) Tetrahedron Lett 2647–2650

  42. Crandall JK, Banks DB, Colyer RA, Watkins RJ, Arrington JP (1968) J Org Chem 33:423–425

    CAS  Google Scholar 

  43. Stanier RY, Palleroni NJ, Duodoroff MJ (1966) J Gen Microbiol 43:159–271

    CAS  PubMed  Google Scholar 

  44. Crabtree R (1995) Chem Rev 95:987–1007

    CAS  Google Scholar 

  45. Waller BJ, Lipscomb JD (1999) Chem Rev 96:2625–2658

    Article  Google Scholar 

  46. Van Beilen JB, Li Z (2002) Curr Opin Biotechnol 13:338–344

    Article  PubMed  Google Scholar 

  47. Li Z, van Beilen JB, Puetz WA, Schmid A, de Raadt A, Griengl H, Witholt B (2002) Curr Opin Chem Biol 6:136–144

    Article  CAS  PubMed  Google Scholar 

  48. Groves JT, McGlusky GA, White RE, Coon MJ (1978) Biochem Biophys Res Commun 81:154–160

    CAS  PubMed  Google Scholar 

  49. Gelb MH, Heimbrook DC, Malkonen P, Sligar SG (1982) Biochemistry 21:370–377

    CAS  PubMed  Google Scholar 

  50. Groves JT, Subramanian DV (1984) J Am Chem Soc 106:2177–2181

    CAS  Google Scholar 

  51. Ortiz de Montellano PR, Stearns RA (1987) J Am Chem Soc 109:3415–3420

    Google Scholar 

  52. Newcomb M, Shen R, Lu Y, Coon MJ, Hollenberg PF, Kopp DA, Lippard SJ (2002) J Am Chem Soc 124:6879–6886

    Article  CAS  PubMed  Google Scholar 

  53. Toy PH, Newcomb M, Hollenberg PF (1998) J Am Chem Soc 120:7719–7729

    Article  CAS  Google Scholar 

  54. Newcomb M, Toy PH (2000) Acc Chem Res 33:449–455

    Article  CAS  PubMed  Google Scholar 

  55. Choi SY, Eaton PE, Kopp DA, Lippard SJ, Newcomb M, Shen RJ (1999) J Am Chem Soc 121:12198–12199

    Article  CAS  Google Scholar 

  56. Groves JT, Kruper WJ, Haushalter RC (1980) J Am Chem Soc 102:6375–6377

    CAS  Google Scholar 

  57. Nappa JM, McKinney RJ (1988) Inorg Chem 27:3740–3745

    CAS  Google Scholar 

  58. Friederich EC, Holmstead RL (1972) J Org Chem 37:2250–2254

    Google Scholar 

  59. Friedrich EC, Jassawalla JDC (1979) J Org Chem 44:4224–4229

    CAS  Google Scholar 

  60. Friedrich EC, Jassawalla JDC (1978) Tetrahedron Lett 953–956

  61. Broadwater JA, Haas JA, Fox BG (1998) Fett/Lipid 100:103–113

  62. Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari V, Labbé Greer CW (2002) FEMS Microbiol Ecol 41:141–150

    Article  CAS  Google Scholar 

  63. Kim E, Zylstra GJ (1999) J Ind Microbiol Biotechnol 23:294–302

    Article  PubMed  Google Scholar 

  64. Zylstra GJ, Kim E (1997) J Ind Microbiol Biotechnol 19:408–414

    CAS  Google Scholar 

  65. Mermod N, Harayam S, Timmis KN (1986) Bio/Technology 4:321–324

  66. De Visser SP, Ogliaro F, Shaik S (2001) Chem Commun 2322–2323

  67. Groves JT (2003) Proc Natl Acad Sci USA 100:3569–3574

    Article  CAS  PubMed  Google Scholar 

  68. Oglisto F, Shaik S (2002) J Am Chem Soc 123:2806–2817

    Google Scholar 

  69. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 35:139–145

    Article  Google Scholar 

  70. Oliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) J Am Chem Soc 122:98977–98989

    Google Scholar 

  71. Ogliaro F, de Visser SP, Groves JT, Shaik S (2001) Angew Chem Int Ed 40:2874–2878

    Article  CAS  Google Scholar 

  72. Ruzicka F, Huang DS, Dollelly MI, Frey PA (1990) Biochemistry 29:1696–1700

Download references

Acknowledgements

We are grateful to the National Science Foundation for funding of this research through the Environmental Molecular Science Institute, CEBIC (Center for Environmental Bioinorganic Chemistry) NSF9810248 (J.T.G., G.J.Z., and R.N.A.), CHE9814301 (J.T.G.), and CHE9950314 (R.N.A.). E.K. was supported through a KOSEF grant to the Center for Proteinaceous Materials at Chosun National University. K.B. was supported by a summer undergraduate research fellowship through CEBIC and received travel funds to support her presentation of this work at ICBIC X from the Hughes Foundation. We thank Dr. Zhengbo Hu for supplying us with authentic samples of endo- and exo-3-norcaranol and 3-norcaranone.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachel N. Austin or John T. Groves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, R.N., Buzzi, K., Kim, E. et al. Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 8, 733–740 (2003). https://doi.org/10.1007/s00775-003-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0466-3

Keywords

Navigation