Skip to main content
Log in

Modulation of the NO trans effect in heme proteins: implications for the activation of soluble guanylate cyclase

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The binding of NO to the iron heme in guanylate cyclase and other heme proteins induces the cleavage of the proximal histidine bonded to the metal. In this study we assess by means of density functional theory (DFT) electronic structure calculations the role of H-bonding to histidine in the modulation of this effect. We have considered in the first place a model of the isolated active site coordinated with imidazole and imidazolate to mimic the effects of a very strong H-bond. We have also investigated four selected ferrous heme proteins with different proximal histidine environments: the O2 sensing FixL, horseradish peroxidase C, and the α and β subunits of human hemoglobin. Our results indicate that polarization and charge transfer effects associated with H-bonding to the proximal histidine play a fundamental role in the modulation of the NO trans effect in heme proteins. We also find computational evidence suggesting that protein structural constraints may affect significantly the cleavage of the Fe-His bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Koshland DE Jr (1992) Science 258:199

    PubMed  Google Scholar 

  2. Marletta MA (1994) Cell 78:927–930

    CAS  PubMed  Google Scholar 

  3. Stone JR, Marletta MA (1994) Biochemistry 33:5636–5640

    CAS  PubMed  Google Scholar 

  4. Stone JR, Marletta MA (1995) Biochemistry 34:14668–14674

    CAS  PubMed  Google Scholar 

  5. Ignarro LJ (1982) Proc Natl Acad Sci USA 79:2870–2873

    CAS  PubMed  Google Scholar 

  6. Traylor TG, Sharma VS (1992) Biochemistry 31:2847–2849

    CAS  PubMed  Google Scholar 

  7. Stone JR, Marletta MA (1996) Biochemistry 35:1093–1099

    Article  CAS  PubMed  Google Scholar 

  8. Schelvis JPM, Seibold SA, Cerda JF, Garavito RM, Babcock GT (2000) J Phys Chem B 104:10844–10850

    Article  CAS  Google Scholar 

  9. Scherlis DA, Estrin DA (2001) J Am Chem Soc 123:8436–8438

    Article  CAS  PubMed  Google Scholar 

  10. Scherlis DA, Cymeryng CB, Estrin DA (2000) Inorg Chem 239:2352–2359

    Article  Google Scholar 

  11. Ghosh A, Wondimagegn T (2000) J Am Chem Soc 122:8101–8102

    Article  CAS  Google Scholar 

  12. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  CAS  PubMed  Google Scholar 

  13. Sigfridsson E, Ryde U (1999) J Biol Inorg Chem 4:99–110

    Article  CAS  PubMed  Google Scholar 

  14. Carloni P, Rothlisberger U, Parrinello M (2002) Acc Chem Res 35:455–464

    Article  CAS  PubMed  Google Scholar 

  15. Rovira C, Sculze B, Eichinger M, Evanseck JD, Parrinello M (2001) Biophys J 81:435–445

    CAS  PubMed  Google Scholar 

  16. Rovira C, Kunc K, Hutter J, Ballone P, Parrinello M (1997) J Phys Chem A 101:8914–8925

    Article  CAS  Google Scholar 

  17. Stanton RV, Peraekylae M, Bakowies D, Kollman PA (1998) J Am Chem Soc 120:3448–3457

    Article  CAS  Google Scholar 

  18. Mignon P, Steyaert J, Loris R, Geerlings P, Loverix S (2003) J Biol Chem (in press)

  19. Okimoto N, Yamanaka K, Ueno J, Hata M, Hoshiro T, Tsuda M (2001) Biophys J 81:2786–2794

    CAS  PubMed  Google Scholar 

  20. Soler JM, Artacho E, Gale J, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  21. Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53:10441–10444

    Google Scholar 

  22. Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453–461

    Article  Google Scholar 

  23. Ordejón P (2000) Phys Status Solidi B 217:335–356

    Article  Google Scholar 

  24. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  25. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738–1742

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  27. Gilles-Gonzalez MA, Ditta G, Helinski DR (1991) Nature 350:170–172

    Google Scholar 

  28. Gilles-Gonzalez MA, Gonzalez G, Perutz MF, Kiger L, Marden M, Poyart C (1994) Biochemistry 33:8067–8073

    CAS  PubMed  Google Scholar 

  29. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038

    CAS  PubMed  Google Scholar 

  30. Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M (1998) Biochemistry 37:8054–8060

    Article  CAS  PubMed  Google Scholar 

  31. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  32. Lukat-Rodgers GS, Rodgers KR (1997) Biochemistry 36:4178–4187

    Article  CAS  PubMed  Google Scholar 

  33. Nagai K, Welborn C, Dolphin D, Kitagawa T (1980) Biochemistry 19:4755–4761

    CAS  PubMed  Google Scholar 

  34. Ascenzi P, Brunori M, Coletta M, Desideri A (1989) Biochem J 258:473–478

    CAS  PubMed  Google Scholar 

  35. Schelvis JPM, Zhao Y, Marletta MA, Babcock GT (1998) Biochemistry 37:16289–16297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.A.E. and F.D. acknowledge partial financial support from Fundación Antorchas, Universidad de Buenos Aires, ANPCYT, and the L.B.P. Endowment for the Sciences and Arts. D.A.E. acknowledges Pablo de Grande and Microsoft Argentina for a generous donation. D.A.E. and F.D. are members of CONICET (Argentina). P.O. acknowledges support from Spain Fundación Ramón Areces and McyT. M.A.M. acknowledges A. Turjanski, A. Crespo, M. González Lebrero, and V. Lenz for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío A. Estrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, M.A., Scherlis, D.A., Doctorovich, F.A. et al. Modulation of the NO trans effect in heme proteins: implications for the activation of soluble guanylate cyclase. J Biol Inorg Chem 8, 595–600 (2003). https://doi.org/10.1007/s00775-003-0452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0452-9

Keywords

Navigation