Skip to main content
Log in

Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ferrochelatase, the terminal enzyme in heme biosynthesis, catalyses metal insertion into protoporphyrin IX. The location of the metal binding site with respect to the bound porphyrin substrate and the mode of metal binding are of central importance for understanding the mechanism of porphyrin metallation. In this work we demonstrate that Zn2+, which is commonly used as substrate in assays of the ferrochelatase reaction, and Cd2+, an inhibitor of the enzyme, bind to the invariant amino acids His183 and Glu264 and water molecules, all located within the porphyrin binding cleft. On the other hand, Mg2+, which has been shown to bind close to the surface at 7 Å from His183, was largely absent from its site. Activity measurements demonstrate that Mg2+ has a stimulatory effect on the enzyme, lowering K M for Zn2+ from 55 to 24 µM. Changing one of the Mg2+ binding residues, Glu272, to serine abolishes the effect of Mg2+. It is proposed that prior to metal insertion the metal may form a sitting-atop (SAT) complex with the invariant His-Glu couple and the porphyrin. Metal binding to the Mg2+ site may stimulate metal release from the protein ligands and its insertion into the porphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.

Similar content being viewed by others

Abbreviations

N-MeMP:

N-methylmesoporphyrin

SAT:

sitting atop complex

References

  1. Dailey HA, Dailey TA, Wu CK, Medlock AE, Wang KF, Rose JP, Wang BC (2000) Cell Mol Life Sci 57:1909–1926

    CAS  PubMed  Google Scholar 

  2. Al-Karadaghi S, Hansson M, Nikonov S, Jönsson B, Hederstedt L (1997) Structure 5:1501–1510

    CAS  PubMed  Google Scholar 

  3. Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) Nat Struct Biol 8:156–160

    CAS  PubMed  Google Scholar 

  4. Karlberg T, Lecerof D, Gora M, Silvegren G, Labbe-Bois R, Hansson M, Al-Karadaghi S (2002) Biochemistry 41:13499–13506

    Article  CAS  PubMed  Google Scholar 

  5. Schubert HL, Raux E, Wilson KS, Warren MJ (1999) Biochemistry 38:10660–10669

    PubMed  Google Scholar 

  6. Leech HK, Raux-Deery E, Heathcote P, Warren MJ (2002) Biochem Soc Trans 30:610–613

    CAS  PubMed  Google Scholar 

  7. Raux E, Schubert HL, Warren MJ (2000) Cell Mol Life Sci 57:1880–1893

    CAS  PubMed  Google Scholar 

  8. Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) J Mol Biol 311:111–122

    Article  CAS  PubMed  Google Scholar 

  9. Schubert HL, Raux E, Brindley AA, Leech HK, Wilson KS, Hill CP, Warren MJ (2002) EMBO J 21:2068–2075

    CAS  PubMed  Google Scholar 

  10. Lavallee DK (1985) Coord Chem Rev 61:55–96

    Article  CAS  Google Scholar 

  11. Inamo M, Kamiya N, Inada Y, Nomura M, Funahashi S (2001) Inorg Chem 40:5636–5644

    Article  CAS  PubMed  Google Scholar 

  12. Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S (2000) J Mol Biol 297:221–232

    CAS  PubMed  Google Scholar 

  13. Blackwood MEJ, Rush TS, Romesberg F, Schultz PG, Spiro TG (1998) Biochemistry 37:779–782

    CAS  PubMed  Google Scholar 

  14. Franco R, Ma JG, Lu Y, Ferreira GC, Shelnutt JA (2000) Biochemistry 39:2517–2529

    CAS  PubMed  Google Scholar 

  15. Lu Y, Sousa A, Franco R, Mangravita A, Ferreira GC, Moura I, Shelnutt JA (2002) Biochemistry 41:8253–8262

    Article  CAS  PubMed  Google Scholar 

  16. Kohno H, Okuda M, Furukawa T, Tokunaga R, Taketani S (1994) Biochim Biophys Acta 1209:95–100

    CAS  PubMed  Google Scholar 

  17. Gora M, Grzybowska E, Rytka J, Labbe-Bois R (1996) J Biol Chem 271:11810–11816

    CAS  PubMed  Google Scholar 

  18. Ferreira GC, Franco R, Mangravita A, George GN (2002) Biochemistry 41:4809–4818

    Article  CAS  PubMed  Google Scholar 

  19. Franco R, Pereira AS, Tavares P, Mangravita A, Barber MJ, Moura I, Ferreira GC (2001) Biochem J 356:217–222

    Article  CAS  PubMed  Google Scholar 

  20. Hansson M, Al-Karadaghi S (1995) Proteins 23:607–609

    CAS  PubMed  Google Scholar 

  21. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    CAS  Google Scholar 

  22. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905–921

    Article  Google Scholar 

  23. Bashford D, Gerwert K (1992) J Mol Biol 224:473–486

    CAS  PubMed  Google Scholar 

  24. Bashford D (1997) In: Ishikawa Y, Oldehoeft RR, Reynders JVW, Tholburn M (eds) Scientific computing in object-oriented parallel environments. Springer, Berlin Heidelberg New York, pp 233–240

  25. Honig B, Nicholls A (1995) Science 268:1144–1149

    PubMed  Google Scholar 

  26. Pearlman DA, Case DA, Caldwell JW, Ross WS, Ferguson DM, Seibel GL, Singh UC, Weiner PK, Kollman PA (1995) AMBER 4.1. University of California, San Francisco

  27. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    CAS  Google Scholar 

  28. Zheng YJ, Bruice TC (1997) J Am Chem Soc 119:8137–8145

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.5. Gaussian, Pittsburgh

  30. Sigfridsson E, Ryde U (1998) J Comput Chem 19:377–395

    Article  CAS  Google Scholar 

  31. Barone V (1994) Chem Phys Lett 226:392–398

    Article  CAS  Google Scholar 

  32. Hehre WJ, Radom L, Scheyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

  33. Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  34. Jordan PM, Dailey HA (1990) Mol Aspects Med 11:21–23

    Google Scholar 

  35. Dailey HA (1987) Ann NY Acad Sci 514:81–86

    CAS  PubMed  Google Scholar 

  36. Cowan JA (1991) The biological chemistry of magnesium. VCH, New York

  37. Fodje M, Al-Karadaghi S (2002) Protein Eng 15:353–358

    Article  CAS  PubMed  Google Scholar 

  38. Sellers VM, Wu CK, Dailey TA, Dailey HA (2001) Biochemistry 40:9821–9827

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Anders Liljas for helpful discussions. This work was supported by grants from the Swedish Natural Science Research Council (to S.A.) and the Swedish Council for Forestry and Agricultural Research and Carl Tryggers Stiftelse för Vetenskaplig Forskning (to M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam Al-Karadaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecerof, D., Fodje, M.N., Alvarez León, R. et al. Metal binding to Bacillus subtilis ferrochelatase and interaction between metal sites. J Biol Inorg Chem 8, 452–458 (2003). https://doi.org/10.1007/s00775-002-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-002-0436-1

Keywords

Navigation