Skip to main content

Advertisement

Log in

Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Measurement of fibroblast growth factor 23 (FGF23) has been reported to be clinically useful for the differential diagnosis of chronic hypophosphatemia. However, assays for research use only are available in Japan. Thus, the objective of this study was to examine the clinical utility of a novel and automated chemiluminescent enzyme immunoassay for the measurement of FGF23.

Materials and methods

Participants were recruited from July 2015 to January 2017 at six facilities in Japan. Thirty-eight patients with X-linked hypophosphatemic rickets (XLH 15 males, 23 females, age 0–66 years), five patients with tumour-induced osteomalacia (TIO 3 males, 2 females, age 60–73 years), and twenty-two patients with hypophosphatemia (11 males, 11 females, age 1–75 years) caused due to other factors participated in this study.

Results

With the clinical cut-off value of FGF23 at 30.0 pg/mL indicated in the Diagnostic Guideline of Rickets/Osteomalacia in Japan, the sensitivity and specificity of FGF23-related hypophosphatemic rickets/osteomalacia without vitamin D deficiency (disease group-1) were 100% and 81.8%, respectively, which distinguished it from non-FGF23-related hypophosphatemia (disease group-2). Furthermore, the diagnostic sensitivity of FGF23-related hypophosphatemia with vitamin D deficiency remained at 100%. Among the four patients with FGF23 levels ≥ 30.0 pg/mL in disease group-2, two patients with relatively higher FGF23 values were suspected to have genuine FGF23-related hypophosphatemia, due to the ectopic production of FGF23 in pulmonary and prostate small cell carcinomas.

Conclusion

The novel FGF23 assay tested in this study is useful for the differential diagnosis of hypophosphatemic rickets/osteomalacia in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fukumoto S, Ozono K, Michigami T, Minagawa M, Okazaki R, Sugimoto T, Takeuchi Y, Matsumoto T (2015) Pathogenesis and diagnostic criteria for rickets and osteomalacia—proposal by an expert panel supported by the Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research, and the Japan Endocrine Society. J Bone Miner Metab 33:467–473

    Article  Google Scholar 

  2. Fukumoto S, Yamashita T (2007) FGF23 is a hormone regulating phosphate metabolism—unique biological characteristics of FGF23. Bone 40:1190–1195

    Article  CAS  Google Scholar 

  3. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  CAS  Google Scholar 

  4. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Jüppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  Google Scholar 

  5. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T (2008) Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: Proposal of diagnostic criteria using FGF23 measurement. Bone 42:1235–1239

    Article  CAS  Google Scholar 

  6. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  Google Scholar 

  7. Ito N, Fukumoto S, Takeuchi Y, Yasuda T, Hasegawa Y, Takemoto F, Tajima T, Dobashi K, Yamazaki Y, Yamashita T, Fujita T (2005) Comparison of two assays for fibroblast growth factor (FGF)-23. J Bone Miner Metab 23:435–440

    Article  CAS  Google Scholar 

  8. Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, Kassem M, Rackoff P, Zimering M, Dalkin A, Drobny E, Colussi G, Shaker JL, Hoogendoorn EH, Hui SL, Econs MJ (2006) Sensitivity of fibroblast growth factor 23 measurements in tumour-induced osteomalacia. J Clin Endocrinol Metab 91:2055–2061

    Article  CAS  Google Scholar 

  9. Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van’t Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, Martin JS, Portal AA (2018) Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med 378:1987–1998

    Article  CAS  Google Scholar 

  10. Portale AA, Carpenter TO, Brandi ML, Briot K, Cheong HI et al (2019) Continued beneficial effects of burosumab in adults with X-linked hypophosphatemia: results from a 24-week treatment continuation period after a 24-week double-blind placebo-controlled period. Calcif Tissue Int 105:271–284

    Article  CAS  Google Scholar 

  11. Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD et al (2018) A randomised, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of Burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res 33:1383–1393

    Article  CAS  Google Scholar 

  12. Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM et al (2019) Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393:2416–2427

    Article  CAS  Google Scholar 

  13. Imanishi Y, Ito N, Rhee Y, Takeuchi Y, Shin CS, Takahashi Y, Onuma H, Kojima M, Kanematsu M, Kanda H, Seino Y, Fukumoto S (2021) Interim analysis of a phase 2 open-label trial assessing burosumab efficacy and safety in patients with tumour-induced osteomalacia. J Bone Miner Res 36:262–270

    Article  CAS  Google Scholar 

  14. Jan de Beur SM, Miller PD, Weber TJ, Peacock M, Insogna K, Kumar R, Rauch F, Luca D, Cimms T, Roberts MS, San Martin J, Carpenter TO (2021) Burosumab for the treatment of tumour-induced osteomalacia. J Bone Miner Res 36:627–635

    Article  CAS  Google Scholar 

  15. Souberbielle JC, Prié D, Piketty ML, Rothenbuhler A, Delanaye P, Chanson P, Cavalier E (2017) Evaluation of a new fully automated assay for plasma intact FGF23. Calcif Tissue Int 101:510–518

    Article  CAS  Google Scholar 

  16. Cavalier E, Lukas P, Bottani M, Aarsand AK, Ceriotti F, Coşkun A, Díaz-Garzón J, Fernàndez-Calle P, Guerra E, Locatelli M, Sandberg S, Carobene A (2020) European biological variation study (EuBIVAS): within- and between-subject biological variation estimates of β-isomerized C-terminal telopeptide of type I collagen (β-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein-a cooperation between the EFLM Working Group on Biological Variation and the International Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on bone metabolism. Osteoporos Int 31:1461–1470

    Article  CAS  Google Scholar 

  17. Laurent MR, De Schepper J, Trouet D, Godefroid N, Boros E, Heinrichs C, Bravenboer B, Velkeniers B, Lammens J, Harvengt P, Cavalier E, Kaux JF, Lombet J, De Waele K, Verroken C, van Hoeck K, Mortier GR, Levtchenko E, Vande Walle J (2021) IConsensus recommendations for the diagnosis and management of x-linked hypophosphatemia in Belgium. Front Endocrinol (Lausanne) 12:641543

    Article  Google Scholar 

  18. Shimizu Y, Fukumoto S, Fujita T (2012) Evaluation of a new automated chemiluminescence immunoassay for FGF23. J Bone Miner Metab 30:217–221

    Article  CAS  Google Scholar 

  19. Su Z, Narla SN, Zhu Y (2014) 25-Hydroxyvitamin D: analysis and clinical application. Clin Chim Acta 433:200–205

    Article  CAS  Google Scholar 

  20. Website of StataCorp LLC. https://www.stata.com/stata12/

  21. Ichihara K, Yomamoto Y, Hotta T, Hosogaya S, Miyachi H, Itoh Y, Ishibashi M, Kang D (2016) Committee on common reference intervals, Japan Society of Clinical Chemistry. Collaborative derivation of reference intervals for major clinical laboratory tests in Japan. Ann Clin Biochem 53:347–356

    Article  Google Scholar 

  22. Tanaka T, Yamashita A, Ichihara K (2008) Reference intervals of clinical tests in children determined by a latent reference value extraction method. J Jpn Pediatric Assoc 112:1117–1132

    Google Scholar 

  23. Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T, Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D deficiency/insufficiency in Japan: proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 35:1–5

    Article  CAS  Google Scholar 

  24. Okazaki R, Ozono K, Fukumoto S, Inoue D, Yamauchi M, Minagawa M, Michigami T, Takeuchi Y, Matsumoto T, Sugimoto T (2017) Assessment criteria for vitamin D deficiency/insufficiency in Japan—proposal by an expert panel supported by Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, The Japanese Society for Bone and Mineral Research and The Japan Endocrine Society [Opinion]. Endocr J 64:1–6

    Article  Google Scholar 

  25. Mak MP, da e Costa Silva VT, Martin RM, Lerario AM, Yu L, Hoff PM, de Castro G (2012) Advanced prostate cancer as a cause of oncogenic osteomalacia: an underdiagnosed condition. Support Care Cancer 20:2195–2197

    Article  Google Scholar 

  26. Latifyan SB, Vanhaeverbeek M, Klastersky J (2014) Tumour-associated osteomalacia and hypoglycemia in a patient with prostate cancer: is Klotho involved? BMJ Case Rep. https://doi.org/10.1136/bcr-2014-206590

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramon I, Kleynen P, Valsamis J, Body JJ, Karmali R (2011) Hypophosphatemia related to paraneoplastic Cushing syndrome in prostate cancer: cure after bilateral adrenalectomy. Calcif Tissue Int 89:442–445

    Article  CAS  Google Scholar 

  28. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, Li X, Yang X, Chen Y, Lin X (2009) Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 32:1278–1283

    Article  CAS  Google Scholar 

  29. Wei J, Zhu A, Ji JS (2019) A Comparison study of vitamin D deficiency among older adults in China and the United States. Sci Rep 9:19713

    Article  CAS  Google Scholar 

  30. Niikura T, Oe K, Sakai Y, Iwakura T, Fukui T, Nishimoto H, Hayashi S, Matsumoto T, Matsushita T, Maruo A, Yagata Y, Kishimoto K, Sakurai A, Kuroda R (2019) Insufficiency and deficiency of vitamin D in elderly patients with fragility fractures of the hip in the Japanese population. J Orthop Surg (Hong Kong). https://doi.org/10.1177/2309499019877517

    Article  Google Scholar 

  31. Ferrari SL, Bonjour JP, Rizzoli RJ (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. Clin Endocrinol Metab 90:1519–1524

    Article  CAS  Google Scholar 

  32. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, Fujita T (2007) Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab 25:419–422

    Article  CAS  Google Scholar 

  33. Jackman DM, Johnson BE (2005) Small-cell lung cancer. Lancet 366:1385–1396

    Article  CAS  Google Scholar 

  34. Sauder A, Wiernek S, Dai X, Pereira R, Yudd M, Patel C, Golden A, Ahmed S, Choe J, Chang V, Sender S, Cai D (2016) FGF23-associated tumour-induced osteomalacia in a patient with small cell carcinoma: a case report and regulatory mechanism study. Int J Surg Pathol 24:116–120

    Article  CAS  Google Scholar 

  35. Nadal R, Schweizer M, Kryvenko ON, Epstein JI, Eisenberger MA (2014) Small cell carcinoma of the prostate. Nat Rev Urol 11:213–219

    Article  CAS  Google Scholar 

  36. Randall RE Jr, Lirenman DS (1964) Hypocalcemia and hypophosphatemia accompanying osteoblastic metastases. J Clin Endocrinol Metab 24:1331–1333

    Article  Google Scholar 

  37. Lyles KW, Berry WR, Haussler M, Harrelson JM, Drezner MK (1980) Hypophosphatemic osteomalacia: association with prostatic carcinoma. Ann Intern Med 93:275–278

    Article  CAS  Google Scholar 

  38. Kabadi UM (1983) Osteomalacia associated with prostatic cancer and osteoblastic metastases. Urology 21:65–67

    Article  CAS  Google Scholar 

  39. McMurtry CT, Godschalk M, Malluche HH, Geng Z, Adler RA (1993) Oncogenic osteomalacia associated with metastatic prostate carcinoma: case report and review of the literature. J Am Geriatr Soc 41:983–985

    Article  CAS  Google Scholar 

  40. Nakahama H, Nakanishi T, Uno H, Takaoka T, Taji N, Uyama O, Kitada O, Sugita M, Miyauchi A, Sugishita T, Fujita T (1995) Prostate cancer-induced oncogenic hypophosphatemic osteomalacia. Urol Int 55:38–40

    Article  CAS  Google Scholar 

  41. Pelger RC, Lycklama A, Nijeholt GA, Papapoulos SE, Hamdy NA (2005) Severe hypophosphatemic osteomalacia in hormone-refractory prostate cancer metastatic to the skeleton: natural history and pitfalls in management. Bone 36:1–5

    Article  Google Scholar 

  42. Cotant CL, Rao PS (2007) Elevated fibroblast growth factor 23 in a patient with metastatic prostate cancer and hypophosphatemia. Am J Kidney Dis 50:1033–1036

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Minaris Medical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: NI, KO, and SF. Formal analysis and investigation: NI. Writing—original draft preparation: NI, and TK. Writing—review and editing: NI, and SF. Funding acquisition: NI, TK, SK, IF, MA, YT, MM, RO, KO, YS, and SF. Resources: NI, TK, SK, IF, MA, YT, HY, TK, TS, MM, RO, KO, YS, and SF. Supervision: NI, KO, and SF.

Corresponding author

Correspondence to Nobuaki Ito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individuals included in this study.

Ethical approval

This study was approved by the ethical review board of the six investigational sites.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, N., Kubota, T., Kitanaka, S. et al. Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23. J Bone Miner Metab 39, 1066–1075 (2021). https://doi.org/10.1007/s00774-021-01250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01250-1

Keywords

Navigation