Skip to main content

Advertisement

Log in

Fracture risk assessment in an Italian group of transgender women after gender-confirming surgery

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Bone health is a critical issue in transgender women (TW) health care. Conflicting results have been reported on bone status after gender-confirming surgery (GCS). No recent data in Italian TW are available.

Materials and methods

The aim of this cross-sectional study was to evaluate fracture risk, lumbar spine BMD and 25OH vitamin D (25OHD) levels in a population of TW on estrogen replacement therapy (ERT) after GCS. We retrospectively analyzed a group of 57 TW, aged 45.3 ± 11.3 years, referred to our Gender Dysphoria Clinic, at least 2 years after GCS. Anthropometric parameters, patient compliance to ERT, biochemical and hormonal assessment, lumbar spine BMD and fracture risk were evaluated.

Results

Prevalence of low bone mass (Z-score ≤ -2) was 40% according to the natal gender. In this group, 17β-estradiol levels were significantly lower (median 21 pg/ml [25th-75th percentile 10.6–48.5] vs 63 pg/ml [38.5–99.5]; p < 0.001) and a higher prevalence of low compliance to ERT was recorded (83% vs 29%; p < 0.0001) compared to those with higher bone mass. An intermediate–high fracture risk was found in 14% of the sample. A high percentage (93%) of hypovitaminosis D was present.

Conclusions

TW on ERT have a high prevalence of low bone mass, significantly associated with low estradiol levels and low compliance to ERT. A high prevalence of hypovitaminosis D was highlighted. Considering that one out of seven TW showed an intermediate-high 10-year fracture risk, such risk assessment may be considered to prevent and manage osteoporosis in this clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gooren LJ, Giltay EJ, Bunck MC (2008) Long-term treatment of transsexuals with cross-sex hormones: extensive personal experience. J Clin Endocrinol Metab 93:19–25. https://doi.org/10.1210/jc.2007-1809

    Article  CAS  PubMed  Google Scholar 

  2. Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, Rosenthal SM, Safer JD, Tangpricha V, T’Sjoen GG (2017) Endocrine treatment of gender-dysphoric/gender-incongruent persons: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 102:3869–3903. https://doi.org/10.1210/jc.2017-01658

    Article  PubMed  Google Scholar 

  3. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187. https://doi.org/10.1152/physrev.00033.2015

    Article  PubMed  Google Scholar 

  4. Van Caenegem E, TʼSjoen G (2015) Bone in trans persons. Curr Opin Endocrinol Diabetes Obes 22:459–466. https://doi.org/10.1097/MED.0000000000000202

    Article  CAS  PubMed  Google Scholar 

  5. T’Sjoen G, Weyers S, Taes Y, Lapauw B, Toye K, Goemaere S, Kaufman JM (2009) Prevalence of low bone mass in relation to estrogen treatment and body composition in male-to-female transsexual persons. J Clin Densitom 12:306–313. https://doi.org/10.1016/j.jocd.2008.11.002

    Article  PubMed  Google Scholar 

  6. Van Caenegem E, Taes Y, Wierckx K, Vandewalle S, Toye K, Kaufman JM, Schreiner T, Haraldsen I, T’Sjoen G (2013) Low bone mass is prevalent in male-to-female transsexual persons before the start of cross-sex hormonal therapy and gonadectomy. Bone. https://doi.org/10.1016/j.bone.2013.01.039

    Article  PubMed  Google Scholar 

  7. Wiepjes CM, Vlot MC, Klaver M, Nota NM, de Blok CJM, de Jongh RT, Lips P, Heijboer AC, Fisher AD, Schreiner T, T’Sjoen G, den Heijer M (2017) Bone mineral density increases in trans persons after 1 year of hormonal treatment: a multicenter prospective observational study. J Bone Miner Res 32:1252–1260. https://doi.org/10.1002/jbmr.3102

    Article  CAS  PubMed  Google Scholar 

  8. Lapauw B, Taes Y, Simoens S, Van Caenegem E, Weyers S, Goemaere S, Toye K, Kaufman J-M, T’Sjoen GG (2008) Body composition, volumetric and areal bone parameters in male-to-female transsexual persons. Bone 43:1016–1021. https://doi.org/10.1016/j.bone.2008.09.001

    Article  PubMed  Google Scholar 

  9. Ruetsche AG, Kneubuehl R, Birkhaeuser MH, Lippuner K (2005) Cortical and trabecular bone mineral density in transsexuals after long-term cross-sex hormonal treatment: a cross-sectional study. Osteoporos Int 16:791–798. https://doi.org/10.1007/s00198-004-1754-7

    Article  PubMed  Google Scholar 

  10. Wiepjes CM, Blok CJ, Staphorsius AS, Nota NM, Vlot MC, Jongh RT, Heijer M (2019) Fracture risk in trans women and trans men using long- term gender- affirming hormonal treatment: a nationwide cohort study. J Bone Miner Res. https://doi.org/10.1002/jbmr.3862

    Article  PubMed  Google Scholar 

  11. Godano A, Maggi M, Jannini E, Meriggiola MC, Ghigo E, Todarello O, Lenzi A, Manieri C (2009) SIAMS-ONIG consensus on hormonal treatment in gender identity disorders. J Endocrinol Investig 32:857–864. https://doi.org/10.1007/bf03345758

    Article  CAS  Google Scholar 

  12. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  13. Khosla S, Monroe DG (2018) Regulation of bone metabolism by sex steroids. Cold Spring Harb Perspect Med 8:a031211. https://doi.org/10.1101/cshperspect.a031211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watts NB, Leslie WD, Foldes AJ, Miller PD (2013) 2013 International Society for Clinical Densitometry position development conference: task force on normative databases. J Clin Densitom 16:472–481. https://doi.org/10.1016/j.jocd.2013.08.001

    Article  PubMed  Google Scholar 

  15. Adami S, Bianchi G, Brandi ML, Di Munno O, Frediani B, Gatti D, Giannini S, Girasole G, Minisola G, Minisola S, Nuti R, Pedrazzoni M, Rossini M, Varenna M (2010) Validation and further development of the WHO 10-year fracture risk assessment tool in Italian postmenopausal women: project rationale and description. Clin Exp Rheumatol 28:561–570. http://www.ncbi.nlm.nih.gov/pubmed/20497630

  16. Rossini M, Adami S, Bertoldo F, Diacinti D, Gatti D, Giannini S, Giusti A, Malavolta N, Minisola S, Osella G, Pedrazzoni M, Sinigaglia L, Viapiana O, Isaia GC (2016) Guidelines for the diagnosis, prevention and management of osteoporosis. Reumatismo 68:1. https://doi.org/10.4081/reumatismo.2016.870

    Article  CAS  PubMed  Google Scholar 

  17. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Isaia G, Giorgino R, Rini GB, Bevilacqua M, Maugeri D, Adami S (2003) Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int 14:577–582. https://doi.org/10.1007/s00198-003-1390-7

    Article  CAS  PubMed  Google Scholar 

  19. Somjen D, Katzburg S, Stern N, Kohen F, Sharon O, Limor R, Jaccard N, Hendel D, Weisman Y (2007) 25 hydroxy-vitamin D3-1α hydroxylase expression and activity in cultured human osteoblasts and their modulation by parathyroid hormone, estrogenic compounds and dihydrotestosterone. J Steroid Biochem Mol Biol 107:238–244. https://doi.org/10.1016/j.jsbmb.2007.03.048

    Article  CAS  PubMed  Google Scholar 

  20. Van Kesteren P, Lips P, Gooren LJG, Asscheman H, Megens J (1998) Long-term follow-up of bone mineral density and bone metabolism in transsexuals treated with cross-sex hormones. Clin Endocrinol (Oxf) 48:347–354. https://doi.org/10.1046/j.1365-2265.1998.00396.x

    Article  Google Scholar 

  21. Weyers S, De Sutter P, Hoebeke S, Monstrey G, Sjoen GT, Verstraelen H, Gerris J (2010) Gynaecological aspects of the treatment and follow-up of transsexual men and women. Facts Views Vis ObGyn 2:36–54

    Google Scholar 

  22. Fighera TM, da Silva E, Lindenau JD-R, Spritzer PM (2018) Impact of cross-sex hormone therapy on bone mineral density and body composition in transwomen. Clin Endocrinol (Oxf) 88:856–862. https://doi.org/10.1111/cen.13607

    Article  CAS  Google Scholar 

  23. Vanderschueren D, Venken K, Ophoff J, Bouillon R, Boonen S (2006) Sex steroids and the periosteum—reconsidering the roles of androgens and estrogens in periosteal expansion. J Clin Endocrinol Metab 91:378–382. https://doi.org/10.1210/jc.2005-1766

    Article  CAS  PubMed  Google Scholar 

  24. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C (2014) Sex steroid actions in male bone. Endocr Rev 35:906–960. https://doi.org/10.1210/er.2014-1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lanfranco F, Zirilli L, Baldi M, Pignatti E, Corneli G, Ghigo E, Aimaretti G, Carani C, Rochira V (2008) A novel mutation in the human aromatase gene: insights on the relationship among serum estradiol, longitudinal growth and bone mineral density in an adult man under estrogen replacement treatment. Bone. https://doi.org/10.1016/j.bone.2008.05.011

    Article  PubMed  Google Scholar 

  26. Rochira V, Zirilli L, Maffei L, Premrou V, Aranda C, Baldi M, Ghigo E, Aimaretti G, Carani C, Lanfranco F (2010) Tall stature without growth hormone: four male patients with aromatase deficiency. J Clin Endocrinol Metab 95:1626–1633. https://doi.org/10.1210/jc.2009-1743

    Article  CAS  PubMed  Google Scholar 

  27. Diamond TH, Higano CS, Smith MR, Guise TA, Singer FR (2004) Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: recommendations for diagnosis and therapies. Cancer 100:892–899. https://doi.org/10.1002/cncr.20056

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Turin (“Ricerca locale 2018 ex-60%”).

Author information

Authors and Affiliations

Authors

Contributions

GM: conceptualization, methodology, data curation, investigation, project administration, writing—original draft. LM: data curation, investigation, project administration, writing-review and editing. MB: methodology, writing—review and editing. PRB: methodology, formal analysis. MP: supervision, validation, writing–review and editing. CM: conceptualization, data curation. EG: supervision, validation. FL: supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Giovanna Motta.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

All TW signed a written informed consent form to participate in the study that was approved by the Ethical Committee of our Institution (number 0032354 Sept. 25th, 2012).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, G., Marinelli, L., Barale, M. et al. Fracture risk assessment in an Italian group of transgender women after gender-confirming surgery. J Bone Miner Metab 38, 885–893 (2020). https://doi.org/10.1007/s00774-020-01127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01127-9

Keywords

Navigation