Skip to main content

Advertisement

Log in

Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Diabetes can cause intervertebral disc degeneration by accelerating apoptosis and senescence of nucleus pulposus mesenchymal stem cells (NPMSCs). The aim of this study was to determine the effect of umbilical cord mesenchymal stem cells (UCMSCs) conditioned medium on high glucose (HG) induced degradation of NPMSCs produced extracellular matrix. NPMSCs were isolated from the inner intervertebral disc tissue using type XI collagenase digestion. According to Annexin V/propidium iodide (PI) flow cytometry analysis; HG leads to an increase in the rate of NPMSCs apoptosis. HG injury also resulted in a marked decrease in the percentage of cells in G0/G1 phase and an increase in cells in S and G2/M phases, indicating that HG induces cell cycle arrest of NPMSCs. Treatment with MSC-CM abolished the effect of HG on cell senescence. HG also significantly inhibited collagen II and aggrecan expression in NPMSCs. After MSC-CM treatment, the expression of these two extracellular matrix components was restored. Exposure to HG resulted in phosphorylation of p38 MAPK, while the levels of total p38 MAPK were not affected. When treated with MSC-CM, phosphorylated p38 MAPK levels of NPMSCs were lower than those without CM treatment. Our data also showed that p38 MAPK inhibitor SB203580 can attenuated phosphorylation of p38 MAPK and resumed the collagen II and aggrecan expression in NPMSCs. In summary, this study demonstrated that MSC-CM has the potential to alleviate HG induced extracellular matrix degradation via the p38 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen S, Hu ZJ, Zhou ZJ, Lin XF, Zhao FD, Ma JJ, Zhang JF, Wang JY, Qin A, Fan SW (2015) Evaluation of 12 novel molecular markers for degenerated nucleus pulposus in a Chinese population. Spine (Phila Pa 1976) 40:1252–1260

    Article  Google Scholar 

  3. Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42:728–736

    Article  CAS  PubMed  Google Scholar 

  4. Teillet L, Verbeke P, Gouraud S, Bakala H, Borot-Laloi C, Heudes D, Bruneval P, Corman B (2000) Food restriction prevents advanced glycation end product accumulation and retards kidney aging in lean rats. J Am Soc Nephrol 11:1488–1497

    CAS  PubMed  Google Scholar 

  5. Boubriak OA, Watson N, Sivan SS, Stubbens N, Urban JP (2013) Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. J Anat 222:341–348

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sivan SS, Tsitron E, Wachtel E, Roughley P, Sakkee N, van der Ham F, Degroot J, Maroudas A (2006) Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 399:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fields AJ, Berg-Johansen B, Metz LN, Miller S, La B, Liebenberg EC, Coughlin DG, Graham JL, Stanhope KL, Havel PJ, Lotz JC (2015) Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J Orthop Res 33:738–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) 25:487–492

    Article  CAS  Google Scholar 

  9. Jiang L, Zhang X, Zheng X, Ru A, Ni X, Wu Y, Tian N, Huang Y, Xue E, Wang X, Xu H (2013) Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: implications for diabetic intervertebral disc degeneration. J Orthop Res 31:692–702

    Article  CAS  PubMed  Google Scholar 

  10. Hu J, Yan Q, Shi C, Tian Y, Cao P, Yuan W (2017) BMSC paracrine activity attenuates interleukin-1β-induced inflammation and apoptosis in rat AF cells via inhibiting relative NF-κB signaling and the mitochondrial pathway. Am J Transl Res 9:79–89

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cunha C, Almeida CR, Almeida MI, Silva AM, Molinos M, Lamas S, Pereira CL, Teixeira GQ, Monteiro AT, Santos SG, Gonçalves RM, Barbosa MA (2017) Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration. Stem Cells Transl Med 6:1029–1039

    Article  CAS  PubMed  Google Scholar 

  12. Maidhof R, Rafiuddin A, Chowdhury F, Jacobsen T, Chahine NO (2017) Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair. J Orthop Res 35:32–40

    Article  PubMed  Google Scholar 

  13. Marfia G, Campanella R, Navone SE, Zucca I, Scotti A, Figini M, Di Vito C, Alessandri G, Riboni L, Parati E (2014) Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther 16:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noriega DC, Ardura F, Hernández-Ramajo R, Martín-Ferrero MÁ, Sánchez-Lite I, Toribio B, Alberca M, García V, Moraleda JM, Sánchez A, García-Sancho J (2017) Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial. Transplantation 101:1945–1951

    Article  PubMed  Google Scholar 

  15. Liu MH, Bian BS, Cui X, Liu LT, Liu H, Huang B, Cui YH, Bian XW, Zhou Y (2016) Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis. Biochim Biophys Acta 1863:1961–1968

    Article  CAS  PubMed  Google Scholar 

  16. Yang H, Cao C, Wu C, Yuan C, Gu Q, Shi Q, Zou J (2015) TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration. Sci Rep 5:13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W (2015) HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–2168

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Zhu L, Wu G, Liang Z, Yang L, Du Z (2016) A comparison between nucleus pulposus-derived stem cell transplantation and nucleus pulposus cell transplantation for the treatment of intervertebral disc degeneration in a rabbit model. Int J Surg 28:77–82

    Article  PubMed  Google Scholar 

  19. Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm (Lond) 9:33

    Article  CAS  Google Scholar 

  20. Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J (2016) The effects of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. J Bone Miner Metab 34:151–160

    Article  CAS  PubMed  Google Scholar 

  21. Kong CG, Park JB, Kim MS, Park EY (2014) High glucose accelerates autophagy in adult rat intervertebral disc cells. Asian Spine J 8:543–548

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheng X, Ni B, Zhang F, Hu Y, Zhao J (2016) High glucose-induced oxidative stress mediates apoptosis and extracellular matrix metabolic imbalances possibly via p38 MAPK activation in rat nucleus pulposus cells. J Diabetes Res 2016:3765173

    PubMed  PubMed Central  Google Scholar 

  23. Serban AI, Stanca L, Geicu OI, Munteanu MC, Costache M, Dinischiotu A (2015) Extracellular matrix is modulated in advanced glycation end products milieu via a RAGE receptor dependent pathway boosted by transforming growth factor-β1 RAGE. J Diabetes 7:114–124

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen KC, Willmore WG, Tayabali AF (2013) Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 306:114–123

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  26. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q (2013) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23:1045–1059

    Article  Google Scholar 

  27. Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316:1271–1281

    Article  CAS  PubMed  Google Scholar 

  28. Kim CH, Lee JH, Won JH, Cho MK (2011) Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J Korean Med Sci 26:726–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos JM, Camões SP, Filipe E, Cipriano M, Barcia RN, Filipe M, Teixeira M, Simões S, Gaspar M, Mosqueira D, Nascimento DS, Pinto-do-Ó P, Cruz P, Cruz H, Castro M, Miranda JP (2015) Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 6:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P (2016) Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull 6:293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2012) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W, Xu W (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:761643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, Arita K, Nishimura M, Kato Y, Kurisu K (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430:109–114

    Article  CAS  PubMed  Google Scholar 

  35. Wang SP, Wang ZH, Peng DY, Li SM, Wang H, Wang XH (2012) Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep 6:848–854

    Article  CAS  PubMed  Google Scholar 

  36. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  37. Zhang B, Shen L, Shi H, Pan Z, Wu L, Yan Y, Zhang X, Mao F, Qian H, Xu W (2016) Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics. Stem Cells Int 2016:1929536

    PubMed  PubMed Central  Google Scholar 

  38. Ti D, Hao H, Fu X, Han W (2016) Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 59:1305–1312

    Article  CAS  PubMed  Google Scholar 

  39. Tsai TT, Ho NY, Lin YT, Lai PL, Fu TS, Niu CC, Chen LH, Chen WJ, Pang JH (2014) Advanced glycation end products in degenerative nucleus pulposus with diabetes. J Orthop Res 32:238–244

    Article  CAS  PubMed  Google Scholar 

  40. Cai F, Zhu L, Wang F, Shi R, Xie XH, Hong X, Wang XH, Wu XT (2017) The paracrine effect of degenerated disc cells on healthy human nucleus pulposus cells is mediated by MAPK and NF-κB pathways and can be reduced by TGF-β1. DNA Cell Biol 36:143–158

    Article  CAS  PubMed  Google Scholar 

  41. Abak A, Amini S, Estiar MA, Montazeri V, Sakhinia E, Abhari A (2018) Analysis of miRNA-221 expression level in tumors and marginal biopsies from patients with breast cancer (cross-sectional observational study). Clin Lab 64:169–175

    Article  CAS  PubMed  Google Scholar 

  42. Zheng X, Zhao FC, Pang Y, Li DY, Yao SC, Sun SS, Guo KJ (2017) Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway. J Mol Med (Berl) 95:615–627

    Article  CAS  Google Scholar 

  43. Coskunpinar E, Cakmak HA, Kalkan AK, Tiryakioglu NO, Erturk M, Ongen Z (2016) Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene 591:90–96

    Article  CAS  PubMed  Google Scholar 

  44. Xu H, Liu X, Zhou J, Chen X, Zhao J (2016) miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncol Lett 12:5247–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao P, Wu J, Lindner D, Fox PL (2017) Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Res 45:7950–7964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghanbari R, Mosakhani N, Sarhadi VK, Armengol G, Nouraee N, Mohammadkhani A, Khorrami S, Arefian E, Paryan M, Malekzadeh R, Knuutila S (2016) Simultaneous underexpression of let-7a-5p and let-7f-5p microRNAs in plasma and stool samples from early stage colorectal carcinoma. Biomark Cancer 7:39–48

    PubMed  PubMed Central  Google Scholar 

  47. Fasihi-Ramandi M, Moridnia A, Najafi A, Sharifi M (2018) Inducing apoptosis and decreasing cell proliferation in human acute promyelocytic leukemia through regulation expression of CASP3 by let-7a-5p blockage. Indian J Hematol Blood Transfus 34:70–77

    Article  PubMed  Google Scholar 

  48. Lozano-Bartolomé J, Llauradó G, Otin MP, Altuna-Coy A, Rojo-Martínez G, Vendrell J, Jorba R, Rodríguez-Gallego E, Chacón MR (2018) Altered expression of miR-181a-5p and miR-23a-3p is associated with obesity and TNFα-induced insulin resistance. J Clin Endocrinol Metab 103:1447

    Article  PubMed  Google Scholar 

  49. Grieco FA, Sebastiani G, Juan-Mateu J, Villate O, Marroqui L, Ladrière L, Tugay K, Regazzi R, Bugliani M, Marchetti P, Dotta F, Eizirik D (2017) MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-Cells. Diabetes 66:100–112

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Zhang W, Zhang L, Chen X, Liu F, Zhang J, Guan S, Sun Y, Chen P, Wang D, Un Nesa E, Cheng Y, Yousef GM (2018) miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer 118:e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simanovich E, Brod V, Rahat MM, Rahat MA (2018) Function of miR-146a-5p in tumor cells as a regulatory switch between cell death and angiogenesis: macrophage therapy revisited. Front Immunol 8:1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin Y, Chen X, Gao ZY, Liu K, Hou Y, Zheng J (2017) The role of miR-320a and IL-1β in human chondrocyte degradation. Bone Joint Res 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun YX, Zhang YX, Zhang D, Xu CM, Chen SC, Zhang JY, Ruan YC, Chen F, Zhang RJ, Qian YQ, Liu YF, Jin LY, Yu TT, Xu HY, Luo YQ, Liu XM, Sun F, Sheng JZ, Huang HF (2017) XCI-escaping gene KDM5C contributes to ovarian development via downregulating miR-320a. Hum Genet 136:227–239

    Article  CAS  PubMed  Google Scholar 

  54. Yu J, Wang L, Yang H, Ding D, Zhang L, Wang J, Chen Q, Zou Q, Jin Y, Liu X (2016) Rab14 suppression mediated by miR-320a inhibits cell proliferation, migration and invasion in breast cancer. J Cancer 7:2317–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou X, Li Q, Xu J, Zhang X, Zhang H, Xiang Y, Fang C, Wang T, Xia S, Zhang Q, Xing Q, He L, Wang L, Xu M, Zhao X (2016) The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling. Sci Rep 6:19910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee ES, Won YJ, Kim BC, Park D, Bae JH, Park SJ, Noh SJ, Kang YR, Choi SH, Yoon JH, Heo K, Yang K, Son TG (2016) Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes. Sci Rep 6:25723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martínez-Acuña N, González-Torres A, Tapia-Vieyra JV, Alvarez-Salas LM (2017) MARK1 is a novel target for miR-125a-5p: implications for cell migration in cervical tumor cells. Microrna 7:54–61

    Google Scholar 

  58. Naidu S, Shi L, Magee P, Middleton JD, Laganá A, Sahoo S, Leong HS, Galvin M, Frese K, Dive C, Guzzardo V, Fassan M, Garofalo M (2017) PDGFR-modulated miR-23b cluster and miR-125a-5p suppress lung tumorigenesis by targeting multiple components of KRAS and NF-kB pathways. Sci Rep 7:15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, Sims EK (2018) Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia 61:1124–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cui B, Liu W, Wang X, Chen Y, Du Q, Zhao X, Zhang H, Liu SL, Tong D, Huang Y (2017) Brucella omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages. Front Immunol 8:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Li Anna, from the Shandong maternity hospital, for providing us with flow analysis technology support.

Funding

This work was supported by Shandong Province Natural Science Fund (ZR2015HM053 & 2017GSF218015), the National Natural Science Foundation of China (81473484), and Shandong Province Science and Technology Research Plan (ZR2014HP053).

Author information

Authors and Affiliations

Authors

Contributions

LQ is responsible for cytological experiments and manuscript writing. RW is responsible for molecular biology analysis. QS is responsible for immunohistochemistry. MY and MJ are responsible for west blot. LD is responsible for the overall experimental design and data analysis.

Corresponding author

Correspondence to Dong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Wang, R., Shi, Q. et al. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. J Bone Miner Metab 37, 455–466 (2019). https://doi.org/10.1007/s00774-018-0953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0953-9

Keywords

Navigation