Skip to main content
Log in

MiR-5100 promotes osteogenic differentiation by targeting Tob2

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

MicroRNAs have emerged as pivotal regulators in various physiological and pathological processes, including osteogenesis. Here we discuss the contribution of miR-5100 to osteoblast differentiation and mineralization. We found that miR-5100 was upregulated during osteoblast differentiation in ST2 and MC3T3-E1 cells. Next, we verified that miR-5100 can promote osteogenic differentiation with gain-of-function and loss-of-function experiments. Target prediction analysis and experimental validation demonstrated that Tob2, which acts as a negative regulator of osteogenesis, was negatively regulated by miR-5100. Furthermore, we confirmed that the important bone-related transcription factor osterix, which can be degraded by binding to Tob2, was influenced by miR-5100 during osteoblast differentiation. Collectively, our results revealed a new molecular mechanism that fine-tunes osteoblast differentiation through miR-5100/Tob2/osterix networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  2. Chua JH, Armugam A, Jeyaseelan K (2009) MicroRNAs: biogenesis, function and applications. Curr Opin Mol Ther 11:189–199

    CAS  PubMed  Google Scholar 

  3. Foshay KM, Ian GG (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2:264–271

    Article  CAS  PubMed  Google Scholar 

  4. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173

    Article  CAS  PubMed  Google Scholar 

  5. Oliver H (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  Google Scholar 

  6. Hanna TK, Lea BH, Li C, Sakari K, Moustapha K (2011) Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371

    Google Scholar 

  7. Yangjin B, Tao Y, Huan-Chang Z, Campeau PM, Yuqing C, Terry B, Dawson BC, Elda M, Jianning T, Lee BH (2012) MiRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000

    Article  Google Scholar 

  8. Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912

    Article  CAS  PubMed  Google Scholar 

  9. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) MiR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031

    Article  CAS  PubMed  Google Scholar 

  10. Fukuda T, Ochi H, Sunamura S, Haiden A, Bando W, Inose H, Okawa A, Asou Y, Shu T (2015) MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett 589:3302–3308

    Article  CAS  PubMed  Google Scholar 

  11. Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728

    Article  CAS  PubMed  Google Scholar 

  12. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clotilde T, Laurence Z, Sebastian A (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Google Scholar 

  14. Min G, Ronghu K, Tianyi C, Junyi Y, Xiongzheng M (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32

    Article  Google Scholar 

  15. Hadi V, Karin EM, Apostolos B, Margareta SS, Lee JJ, Tvall JOL (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  Google Scholar 

  16. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590:185–192

    Article  CAS  PubMed  Google Scholar 

  18. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  19. Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225

    Article  PubMed  Google Scholar 

  20. Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402

    Article  CAS  PubMed  Google Scholar 

  21. Straalen JPV, Sanders E, Prummel MF, Sanders GTB (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–33

    Article  PubMed  Google Scholar 

  22. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate osterix (Osx) mRNA stability. J Biol Chem 288:14264–14275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  CAS  PubMed  Google Scholar 

  25. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang H, Yun J, Wang Y, Chen T, Yang L, He H, Lin Z, Liu T, Teng Y, Kamp DW (2015) MiR-5100 promotes tumor growth in lung cancer by targeting Rab6. Cancer Lett 362:15–24

    Article  CAS  PubMed  Google Scholar 

  27. Sebastiaan WG (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72

    Article  Google Scholar 

  28. Mauxion F, Chen CYA, Séraphin B, Shyu AB (2009) BTG/TOB factors impact deadenylases. Trends Biochem Sci 34:640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikematsu N, Yoshida TJ, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T (1999) Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 18:7432–7441

    Article  CAS  PubMed  Google Scholar 

  30. Tzachanis D, Freeman GJ, Hirano N, Puijenbroek AAFLV, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182

    Article  CAS  PubMed  Google Scholar 

  31. Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81371909) and the Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan period (2013BAI07B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cui, Y., Luan, J. et al. MiR-5100 promotes osteogenic differentiation by targeting Tob2. J Bone Miner Metab 35, 608–615 (2017). https://doi.org/10.1007/s00774-016-0799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0799-y

Keywords

Navigation