Skip to main content

Advertisement

Log in

Dynamic live imaging of bone: opening a new era with ‘bone histodynametry’

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Recent advances in optical imaging with two-photon excitation microscopy have enabled visualization of the inside of intact bone tissues in living animals. Using these advanced techniques, the dynamic behaviors of live bone cells and static histological information on bone tissue structures can be elucidated. The migration and positioning of osteoclast precursor monocytes, the bone-resorbing function of mature osteoclasts, and its functional coupling with bone-replenishing osteoblasts have been evaluated, including their dynamic properties in intact live bones. This novel ‘bone histodynametric’ methodology, combined with conventional histomorphometric analyses, will surely contribute to opening of a new era in bone and mineral research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  PubMed  CAS  Google Scholar 

  2. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  PubMed  CAS  Google Scholar 

  3. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  PubMed  CAS  Google Scholar 

  4. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  5. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  6. Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880

    Article  PubMed  CAS  Google Scholar 

  7. Germain RN, Bajenoff M, Castellino F, Chieppa M, Egen JG, Huang AYC, Ishii M, Koo LY, Qi H (2008) Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol Rev 221:163–181

    Article  PubMed  CAS  Google Scholar 

  8. Wang BG, Konig K, Halbhuber KJ (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microscopy 238:1–20

    Article  CAS  Google Scholar 

  9. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    Article  PubMed  CAS  Google Scholar 

  10. Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, Silberstein LE, von Andrian UH (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8 + T cells. Immunity 22:259–270

    Article  PubMed  CAS  Google Scholar 

  11. Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, Luster AD, Scadden DT, Lin CP (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973

    Article  PubMed  CAS  Google Scholar 

  12. Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528

    Article  PubMed  CAS  Google Scholar 

  13. Klauschen F, Ishii M, Qi H, Bajénoff M, Egen JG, Germain RN, Meier-Schellersheim M (2009) Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat Protoc 4:1305–1311

    Article  PubMed  CAS  Google Scholar 

  14. Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN (2010) Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207:2793–2798

    Article  PubMed  CAS  Google Scholar 

  15. Kikuta J, Wada Y, Kowada T, Wang Z, Sun-Wada GH, Nishiyama I, Mizukami S, Maiya N, Yasuda H, Kumanogoh A, Kikuchi K, Germain RN, Ishii M (2013) Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest (published online)

  16. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–1876

    Article  PubMed  Google Scholar 

  17. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873

    Article  PubMed  CAS  Google Scholar 

  18. Bajénoff M, Glaichenhaus N, Germain RN (2008) Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 181:3947–3954

    PubMed  Google Scholar 

  19. Bousso P, Bhakta NR, Lewis RS, Robey E (2002) Dynamic of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296:1876–1880

    Article  PubMed  CAS  Google Scholar 

  20. Mazo IB, Massberg S, von Andrian UH (2011) Hematopoietic stem and progenitor cell trafficking. Trends Immunol 32:493–503

    Article  PubMed  CAS  Google Scholar 

  21. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    Article  PubMed  CAS  Google Scholar 

  22. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    Article  PubMed  CAS  Google Scholar 

  23. Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ (2007) Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trend Immunol 28:102–107

    Article  CAS  Google Scholar 

  24. Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426

    Article  PubMed  CAS  Google Scholar 

  25. Kotani M, Kikuta J, Klauschen F, Chino T, Kobayashi Y, Yasuda H, Tamai K, Miyawaki A, Kanagawa O, Tomura M, Ishii M (2013) Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques. J Immunol 190:605–612

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1998) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122:1373–1382

    Article  Google Scholar 

  27. Kowada T, Kikuta J, Kubo A, Ishii M, Maeda H, Mizukami S, Kikuchi K (2011) In vivo fluorescence imaging of bone-resorbing osteoclasts. J Am Chem Soc 133:17772–17776

    Article  PubMed  CAS  Google Scholar 

  28. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  PubMed  CAS  Google Scholar 

  29. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  PubMed  CAS  Google Scholar 

  30. Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473:201–209

    Article  PubMed  CAS  Google Scholar 

  31. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74

    Article  PubMed  CAS  Google Scholar 

  32. Ohba S, Ikeda T, Kugimiya F, Yano F, Lichtler AC, Nakamura K, Takato T, Kawaguchi H, Chung UI (2007) Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor. FASEB J 21:1777–1787

    Article  PubMed  CAS  Google Scholar 

  33. Narayan K, Juneja S, Garcia C (1994) Effects of 5-fluorouracil or total-body irradiation on murine bone marrow microvasculature. Exp Hematol 22:142–148

    PubMed  CAS  Google Scholar 

  34. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  PubMed  CAS  Google Scholar 

  35. Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB (2011) Issues in modern bone histomorphometry. Bone 49:955–964

    Article  PubMed  CAS  Google Scholar 

  36. Nagasawa T, Omatsu Y, Sugiyama T (2011) Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol 32:315–320

    Article  PubMed  CAS  Google Scholar 

  37. Mercier FE, Ragu C, Scadden DT (2011) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60

    Article  PubMed  Google Scholar 

  38. Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328:679–687

    Article  PubMed  CAS  Google Scholar 

  39. Coleman RE (2011) Bone cancer in 2011: Prevention and treatment of bone metastases. Nat Rev Clin Oncol 9:76–78

    Article  PubMed  Google Scholar 

  40. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Côté D, Sykes M, Strom TB, Scadden DT, Lin CP (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216–219

    Article  PubMed  CAS  Google Scholar 

  41. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, Jackson TL, Gaiano N, Oliver T, Reya T (2007) Imaging hematopoietic precursor division in real time. Cell Stem Cell 1:541–554

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Ishii.

About this article

Cite this article

Ishii, M., Fujimori, S., Kaneko, T. et al. Dynamic live imaging of bone: opening a new era with ‘bone histodynametry’. J Bone Miner Metab 31, 507–511 (2013). https://doi.org/10.1007/s00774-013-0437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0437-x

Keywords

Navigation