Skip to main content
Log in

Bone mass of Spanish school children: impact of anthropometric, dietary and body composition factors

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The purpose of this study was to: (a) determine the relationship between quantitative ultrasound (QUS) results and anthropometric, dietary and body composition factors and establish reference ranges for amplitude-dependent speed of sound (Ad-SoS) in the phalanges and broadband ultrasound attenuation (BUA) in the calcaneus of children from Extremadura, Spain, and (b) to present reference curves for this population. Healthy children (n = 245), aged 4–16 years, were included (124 girls and 121 boys). Phalangeal and calcaneal QUS measurements were performed using DBM Sonic Bone Profiler and McCue CUBA Clinical ultrasound devices, respectively. Weight, height and body mass index (BMI) were evaluated by anthropometric methods. Fat percentage, fat mass, lean mass (FFM) and total body water (TBWater) were evaluated by bioelectrical impedance measurements using a Holtain body composition analyzer. Food intake was evaluated by a 7-day food record. A gender analysis revealed that Ad-SoS and BUA parameters increased significantly with age and that both positively correlated with age, weight, height, BMI, FFM and TBWater. For both genders, Ad-SoS showed significant and positive correlations with age, weight, height, BMI, FFM, BUA and TBWater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ad-SoS:

Amplitude-dependent speed of sound

BUA:

Broadband ultrasound attenuation

FP:

Fat percentage

FM:

Fat mass

FFM:

Lean mass

TBWater:

Total body water

References

  1. Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4:42–47

    Article  PubMed  CAS  Google Scholar 

  2. Tavakoli MB, Evans JA (1991) Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys Med Biol 36:1529–1537

    Article  PubMed  CAS  Google Scholar 

  3. Tavakoli MB, Evans JA (1992) The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 30:389–395

    Article  PubMed  CAS  Google Scholar 

  4. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J (1995) Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 56:368–371

    Article  PubMed  CAS  Google Scholar 

  5. Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice. Martin Dunitz Ltd, London

    Google Scholar 

  6. Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78

    Article  PubMed  Google Scholar 

  7. Babaroutsi E, Magkos F, Manios Y, Sidossis LS (2005) Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab 23:157–166

    Article  PubMed  Google Scholar 

  8. Bauer AQ, Anderson CC, Holland MR, Miller JG (2009) Bone sonometry: reducing phase aberration to improve estimates of broadband ultrasonic attenuation. J Acoust Soc Am 125:522–529

    Article  PubMed  Google Scholar 

  9. Baroncelli GI, Federico G, Bertelloni S, de Terlizzi F, Cadossi R, Saggese G (2001) Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 49:713–718

    Article  PubMed  CAS  Google Scholar 

  10. Baroncelli GI, Federico G, Bertelloni S, Sodini F, de Terlizzi F, Cadossi R, Saggese G (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  11. Kann P, Schulz U, Nink M, Pfutzner A, Schrezenmeir J, Beyer J (1993) Architecture in cortical bone and ultrasound transmission velocity. Clin Rheumatol 12:364–367

    Article  PubMed  CAS  Google Scholar 

  12. Lanou AJ, Berkow SE, Barnard ND (2005) Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115:736–743

    Article  PubMed  Google Scholar 

  13. Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53:71–74

    Article  PubMed  CAS  Google Scholar 

  14. Benton MJ, White A (2006) Osteoporosis: recommendations for resistance exercise and supplementation with calcium and vitamin D to promote bone health. J Community Health Nurs 23:201–211

    Article  PubMed  Google Scholar 

  15. Yamaguchi M (2009) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338:241–254

    Google Scholar 

  16. Gimeno J, Azcona C, Sierrasesumaga L (2001) Estudio de la densidad mineral osea mediante osteosonografia en niños y adolescentes sanos: valores de normalidad. An Esp Pediatr 54:540–564

    Google Scholar 

  17. Halaba ZP, Bursa J, Kaplon UK, Pluskiewicz W, Marciniak S, Drzewiecka U (2007) Phalangeal quantitative ultrasound measurements in former pre-term children aged 9–11 years. Br J Radiol 80:401–405

    Article  PubMed  CAS  Google Scholar 

  18. Halaba ZP, Pluskiewicz W (2007) Re: Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development by Baroncelli et al. Bone 40:1178–1179

    Article  PubMed  Google Scholar 

  19. Dib L, Arabi A, Maalouf J, Nabulsi M, El-Hajj FG (2005) Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone 36:736–742

    Article  PubMed  Google Scholar 

  20. Ribeiro RR, Guerra-Junior G, de Azevedo Barros-Filho A (2009) Bone mass in schoolchildren in Brazil: the effect of racial miscegenation, pubertal stage, and socioeconomic differences. J Bone Miner Metab 27:494–501

  21. Pedrera JD, Canal ML, Postigo S, Lavado J, Hernandez ER, Rico H (2001) Phalangeal bone ultrasound and its possible correlation with nutrient in an area of high protein intake. Ann Nutr Metab 45:86–90

    Article  PubMed  CAS  Google Scholar 

  22. Rico H, Canal ML, Manas P, Lavado JM, Costa C, Pedrera JD (2002) Effects of caffeine, vitamin D, and other nutrients on quantitative phalangeal bone ultrasound in postmenopausal women. Nutrition 18:189–193

    Article  PubMed  CAS  Google Scholar 

  23. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman & Hall, New York

    Google Scholar 

  24. Halaba Z, Pluskiewicz W (1997) The assessment of development of bone mass in children by quantitative ultrasound through the proximal phalanxes of the hand. Ultrasound Med Biol 23:1331–1335

    Article  PubMed  CAS  Google Scholar 

  25. Arabi A, Nabulsi M, Maalouf J, Choucair M, Khalife H, Vieth R, El-Hajj FG (2004) Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 35:1169–1179

    Article  PubMed  Google Scholar 

  26. Yilmaz D, Ersoy B, Bilgin E, Gumuser G, Onur E, Pinar ED (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab 23:476–482

    Article  PubMed  CAS  Google Scholar 

  27. Lin YC, Tu SH, Pan WH (2007) Bone mass status of school-aged children in Taiwan assessed by quantitative ultrasound: the Nutrition and Health Survey in Taiwan Elementary School Children (NAHSIT Children 2001–2002). Asia Pac J Clin Nutr 16 Suppl 2:585–593

    Google Scholar 

  28. Sasaki M, Motegi E, Soejima U, Nomura M, Kaneko Y, Shimizu T, Takeuchi F, Yamaguchi T, Yamanaka S, Yamaguchi H (2003) Appraisal of bone maturity age derived from broadband ultrasonic attenuation in Japanese children and adolescents. Bull Tokyo Dent Coll 44:37–42

    Article  PubMed  Google Scholar 

  29. Zhu ZQ, Liu W, Xu CL, Han SM, Zu SY, Zhu GJ (2008) Reference data for quantitative ultrasound values of calcaneus in 2927 healthy Chinese men. J Bone Miner Metab 26:165–171

    Article  PubMed  Google Scholar 

  30. Micklesfield LK, Zielonka EA, Charlton KE, Katzenellenbogen L, Harkins J, Lambert EV (2004) Ultrasound bone measurements in pre-adolescent girls: interaction between ethnicity and lifestyle factors. Acta Paediatr 93:752–758

    Article  PubMed  CAS  Google Scholar 

  31. Winzenberg TM, Shaw K, Fryer J, Jones G (2006) Calcium supplementation for improving bone mineral density in children. Cochrane Database Syst Rev (2):CD005119

  32. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  33. Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 7:227–243

    Article  PubMed  CAS  Google Scholar 

  34. Leonard CM, Roza MA, Barr RD, Webber CE (2009) Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatr Radiol 39:148–154

    Article  PubMed  Google Scholar 

  35. Rico H, Gomez M, Aguado F, Villa LF, Hernandez ER, Cortes J (1999) Impact of weight in obese subjects on bone speed of sound. Invest Radiol 34:596–599

    Article  PubMed  CAS  Google Scholar 

  36. Saadi HF, Reed RL, Carter AO, Dunn EV, Qazaq HS, Al-Suhaili AR (2003) Quantitative ultrasound of the calcaneus in Arabian women: relation to anthropometric and lifestyle factors. Maturitas 44:215–223

    Article  PubMed  CAS  Google Scholar 

  37. Gregg EW, Kriska AM, Salamone LM, Wolf RL, Roberts MM, Ferrell RE, Anderson SJ, Kuller LH, Cauley JA (1999) Correlates of quantitative ultrasound in the Women’s Healthy Lifestyle Project. Osteoporos Int 10:416–424

    Article  PubMed  CAS  Google Scholar 

  38. Hausler KD, Rich PA, Barry EB (1997) Water bath and contact methods in ultrasonic evaluation of bone. Calcif Tissue Int 61:26–29

    Article  PubMed  CAS  Google Scholar 

  39. Barkmann R, Rohrschneider W, Vierling M, Troger J, de TF, Cadossi R, Heller M, Gluer CC (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Pedrera-Zamorano.

About this article

Cite this article

Lavado-Garcia, J.M., Calderon-Garcia, J.F., Moran, J.M. et al. Bone mass of Spanish school children: impact of anthropometric, dietary and body composition factors. J Bone Miner Metab 30, 193–201 (2012). https://doi.org/10.1007/s00774-011-0301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0301-9

Keywords

Navigation