Skip to main content

Advertisement

Log in

Bone metabolism and the muscle–bone relationship in children, adolescents and young adults with phenylketonuria

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The aim of the study was to assess body composition in subjects with phenylketonuria (PKU). Forty-five patients aged 13.8 ± 5.2 years were evaluated. Among them, 15 patients had not reached sexual maturity, showing normal serum values of phenylalanine (Phe) (subgroup 1), and 30 subjects were sexually mature (Tanner 5 stage), showing either normal serum Phe (18 cases; subgroup 2a) or increased serum Phe (12 cases; subgroup 2b). DXA-assessed spine and total body (TB) measurements [bone mineral density (BMD), bone mineral content (BMC), lean body mass (LBM) and the calculated ratios BMC/LBM] as well as laboratory parameters (serum carboxyterminal telopeptide of type I collagen, bone alkaline phosphatase, osteocalcin, parathormone, calcitonin, total and ionized calcium) were analyzed. Statistically significant differences were revealed between subgroup 1 versus 2a for TB BMC/LBM ratio SD scores and between subgroup 2a versus 2b for TB BMD, spine BMD, TB BMC/LBM ratio and spine BMC/LBM ratio SD scores. Stepwise multiple regression analysis revealed that serum Phe negatively affected bone status. The skeletal status in children with PKU is impaired by the disease. Applying body composition parameters instead of BMD alone may reflect the level of impairment in a new, different way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hill RE (1993) The diagnosis of inborn errors of metabolism by examination of the genotype. Clin Chim Acta 217:3–14

    Article  PubMed  CAS  Google Scholar 

  2. Allen JR, Humphries IR, Waters DL, Roberts DC, Lipson AH, Howman-Giles RG, Gaskin KJ (1994) Decreased bone mineral density in children with phenylketonuria. Am J Clin Nutr 59:419–422

    PubMed  CAS  Google Scholar 

  3. Hillman L, Schlotzhauer C, Lee D, Grasela J, Witter S, Allen S, Hillman R (1996) Decreased bone mineralization in children with phenylketonuria under treatment. Eur J Pediatr 155:S148–S152

    Article  PubMed  Google Scholar 

  4. Al-Qadreh A, Schulpis KH, Athanasopoulou H, Mengreli C, Skarpalezou A, Voskaki I (1998) Bone mineral status in children with phenylketonuria under treatment. Acta Paediatr 87:1162–1166

    Article  PubMed  CAS  Google Scholar 

  5. Pérez-Dueñas B, Cambra FJ, Vilaseca MA, Lambruschini N, Campistol J, Camacho JA (2002) New approach to osteopenia in phenylketonuric patients. Acta Paediatr 91:899–904

    Article  PubMed  Google Scholar 

  6. Zeman J, Bayer M, Stepán J (1999) Bone mineral density in patients with phenylketonuria. Acta Paediatr 88:1348–1351

    Article  PubMed  CAS  Google Scholar 

  7. Barat P, Barthe N, Redonnet-Vernhet I, Parrot F (2002) The impact of the control of serum phenylalanine levels on osteopenia in patients with phenylketonuria. Eur J Pediatr 161:687–688

    Article  PubMed  CAS  Google Scholar 

  8. Greeves LG, Carson DJ, Magee A, Patterson CC (1997) Fractures and phenylketonuria. Acta Paediatr 86:242–244

    Article  PubMed  CAS  Google Scholar 

  9. Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries IR, Reed E, Knight J, Howman-Giles R, Gaskin K (1995) Volumetric bone mineral density—a potential role in paediatrics. Acta Paediatr Suppl 411:12–16 (discussion 17)

    Article  PubMed  CAS  Google Scholar 

  10. Ferreti JL, Capozza RF, Cointry GR (1998) Gender related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans. Bone 22:683–690

    Article  Google Scholar 

  11. Högler W, Briody J, Woodhead HJ, Chan A, Cowell CT (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88

    Article  PubMed  Google Scholar 

  12. Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972

    Article  PubMed  CAS  Google Scholar 

  13. Płudowski P, Matusik H, Olszaniecka M, Lebiedowski M, Lorenc RS (2005) Reference values for the indicators of skeletal and muscular status of healthy polish children. J Clin Densitom 8:164–177

    Article  PubMed  Google Scholar 

  14. Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224

    PubMed  CAS  Google Scholar 

  15. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226:403–413

    Article  PubMed  CAS  Google Scholar 

  16. Yannicelli S, Medeiros DM (2002) Elevated plasma phenylalanine concentrations may adversely affect bone status of phenylketonuric mice. J Inherit Metab Dis 25:347–361

    Article  PubMed  CAS  Google Scholar 

  17. Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73

    Article  PubMed  CAS  Google Scholar 

  18. McMurry MP, Chan GM, Leonard CO, Ernst SL (1992) Bone mineral status in children with phenylketonuria—relationship to nutritional intake and phenylalanine control. Am J Clin Nutr 55:997–1004

    PubMed  CAS  Google Scholar 

  19. Płudowski P, Karczmarewicz E, Socha J, Matusik H, Syczewska M, Lorenc RS (2007) Skeletal and muscular status in juveniles with GFD treated clinical and newly diagnosed atypical celiac disease—preliminary data. J Clin Densitom 10:76–85

    Article  PubMed  Google Scholar 

  20. Płudowski P, Lebiedowski M, Olszaniecka M, Marowska J, Matusik H, Lorenc RS (2006) Idiopathic juvenile osteoporosis—an analysis of muscle–bone relationship. Osteoporos Int 17:1681–1690

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Adamczyk.

About this article

Cite this article

Adamczyk, P., Morawiec-Knysak, A., Płudowski, P. et al. Bone metabolism and the muscle–bone relationship in children, adolescents and young adults with phenylketonuria. J Bone Miner Metab 29, 236–244 (2011). https://doi.org/10.1007/s00774-010-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0216-x

Keywords

Navigation