Skip to main content

Advertisement

Log in

Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain to be fully elucidated. Because of the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own, was unable to induce osteoclastogenesis of osteoclast precursors; however, 24 h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. Receptor activator of NFkB ligand (RANKL) (with or without M-CSF) stimulation for 3–4 days in gravity of cells that had been exposed to MMG for 24 h enhanced the formation of very large tartrate-resistant acid phosphatase (TRAP)-positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of the osteoclast marker genes TRAP and cathepsin K. To validate the in vitro system, we studied the hindlimb unloading (HLU) system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by micro-CT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP-positive multinucleated osteoclasts formed and also an increase in RANKL-stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of HLU. In contrast to earlier reported findings, we did not observe any histomorphometric changes in the bone formation parameters. Thus, the foregoing observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity-induced bone loss by targeting the molecular events occurring in microgravity-induced enhanced osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blanc S, Normand S, Ritz P, Pachiaudi C, Vico L, Gharib C, Gauquelin-Koch G (1998) Energy and water metabolism, body composition, and hormonal changes induced by 42 days of enforced inactivity and simulated weightlessness. J Clin Endocrinol Metab 83:4289–4297

    Article  CAS  PubMed  Google Scholar 

  2. Fowler JF Jr (1991) Physiological changes during spaceflight. Cutis 48:291–295

    PubMed  Google Scholar 

  3. Vernikos J (1996) Human physiology in space. Bioessays 18:1029–1037

    Article  CAS  PubMed  Google Scholar 

  4. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C (1997) Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone (NY) 20:547–551

    CAS  Google Scholar 

  5. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  6. Vico L, Lafage-Proust MH, Alexandre C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone (NY) 22:95S–100S

    CAS  Google Scholar 

  7. Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C (1998) Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 44:578–585

    CAS  PubMed  Google Scholar 

  8. Smith SM, Nillen JL, Leblanc A, Lipton A, Demers LM, Lane HW, Leach CS (1998) Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 83:3584–3591

    Article  CAS  PubMed  Google Scholar 

  9. Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC (2005) Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res 20:208–218

    Article  CAS  PubMed  Google Scholar 

  10. Abram AC, Keller TS, Spengler DM (1988) The effects of simulated weightlessness on bone biomechanical and biochemical properties in the maturing rat. J Biomech 21:755–767

    Article  CAS  PubMed  Google Scholar 

  11. Vico L, Chappard D, Alexandre C, Palle S, Minaire P, Riffat G, Novikov VE, Bakulin AV (1987) Effects of weightlessness on bone mass and osteoclast number in pregnant rats after a five-day spaceflight (COSMOS 1514). Bone (NY) 8:95–103

    CAS  Google Scholar 

  12. Wronski TJ, Morey ER (1982) Skeletal abnormalities in rats induced by simulated weightlessness. Metab Bone Dis Relat Res 4:69–75

    Article  CAS  PubMed  Google Scholar 

  13. Morey ER, Baylink DJ (1978) Inhibition of bone formation during space flight. Science 201:1138–1141

    Article  CAS  PubMed  Google Scholar 

  14. Spengler DM, Morey ER, Carter DR, Turner RT, Baylink DJ (1983) Effects of spaceflight on structural and material strength of growing bone. Proc Soc Exp Biol Med 174:224–228

    CAS  PubMed  Google Scholar 

  15. Turner RT, Wakley GK, Szukalski BW (1985) Effects of gravitational and muscular loading on bone formation in growing rats. Physiologist 28:S67–S68

    CAS  PubMed  Google Scholar 

  16. Wronski TJ, Morey ER (1983) Recovery of the rat skeleton from the adverse effects of simulated weightlessness. Metab Bone Dis Relat Res 4:347–352

    CAS  PubMed  Google Scholar 

  17. Davis BA, Sipe B, Gershan LA, Fiacco GJ, Lorenz TC, Jeffrey JJ, Partridge NC (1998) Collagenase and tissue plasminogen activator production in developing rat calvariae: normal progression despite fetal exposure to microgravity. Calcif Tissue Int 63:416–422

    Article  CAS  PubMed  Google Scholar 

  18. Vico L, Bourrin S, Genty C, Palle S, Alexandre C (1993) Histomorphometric analyses of cancellous bone from COSMOS 2044 rats. J Appl Physiol 75:2203–2208

    CAS  PubMed  Google Scholar 

  19. Kaplansky AS, Durnova GN, Burkovskaya TE, Vorotnikova EV (1991) The effect of microgravity on bone fracture healing in rats flown on Cosmos-2044. Physiologist 34:S196–S199

    CAS  PubMed  Google Scholar 

  20. Wronski TJ, Morey ER (1983) Alterations in calcium homeostasis and bone during actual and simulated space flight. Med Sci Sports Exerc 15:410–414

    CAS  PubMed  Google Scholar 

  21. Van Loon JJ, Bervoets DJ, Burger EH, Dieudonné SC, Hagen JW, Semeins CM, Doulabi BZ, Veldhuijzen JP (1995) Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J Bone Miner Res 10:550–557

    Article  PubMed  Google Scholar 

  22. Berezovska OP, Rodionova NV, Grigoryan EN, Mitashov VI (1998) Changes in the numbers of osteoclasts in newts under conditions of microgravity. Adv Space Res 21:1059–1063

    Article  CAS  PubMed  Google Scholar 

  23. Zerath E, Holy X, Andre C, Renault S, Noel B, Delannoy P, Hott M, Marie PJ (2000) Effects of Bion 11 14-day space flight on monkey iliac bone. J Gravit Physiol 7:S155–S156

    CAS  PubMed  Google Scholar 

  24. Scheld K, Zittermann A, Heer M, Herzog B, Mika C, Drummer C, Stehle P (2001) Nitrogen metabolism and bone metabolism markers in healthy adults during 16 weeks of bed rest. Clin Chem 47:1688–1695

    CAS  PubMed  Google Scholar 

  25. Morey-Holton ER, Globus RK (1998) Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone 22:83S–88S

    Article  CAS  PubMed  Google Scholar 

  26. Globus RK, Bikle DD, Morey-Holton E (1984) Effects of simulated weightlessness on bone mineral metabolism. Endocrinology 114:2264–2270

    Article  CAS  PubMed  Google Scholar 

  27. Halloran BP, Bikle DD, Cone CM, Morey-Holton E (1988) Glucocorticoids and inhibition of bone formation induced by skeletal unloading. Am J Physiol 255:E875–E879

    CAS  PubMed  Google Scholar 

  28. Simske SJ, Guerra KM, Greenberg AR, Luttges MW (1992) The physical and mechanical effects of suspension-induced osteopenia on mouse long bones. J Biomech 25:489–499

    Article  CAS  PubMed  Google Scholar 

  29. Sakata T, Sakai A, Tsurukami H, Okimoto N, Okazaki Y, Ikeda S, Norimura T, Nakamura T (1999) Trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Bone Miner Res 14:1596–1604

    Article  CAS  PubMed  Google Scholar 

  30. Saxena R, Pan G, McDonald JM (2007) Osteoblast and osteoclast differentiation in modeled microgravity. Ann N Y Acad Sci 1116:494–4988

    Article  CAS  PubMed  Google Scholar 

  31. Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:F12–F25

    CAS  PubMed  Google Scholar 

  32. Sarkar D, Nagaya T, Koga K, Kambe F, Nomura Y, Seo H (2000) Rotation in clinostat results in apoptosis of osteoblastic ROS 17/2.8 cells. J Gravit Physiol 7:P71–P72

    CAS  PubMed  Google Scholar 

  33. Kanematsu M, Yoshimura K, Takaoki M, Sato A (2002) Vector-averaged gravity regulates gene expression of receptor activator of NF-kappaB (RANK) ligand and osteoprotegerin in bone marrow stromal cells via cyclic AMP/protein kinase A pathway. Bone (NY) 30:553–558

    CAS  Google Scholar 

  34. Rucci N, Rufo A, Alamanou M, Teti (2007) Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem 100:464–473

    Article  CAS  PubMed  Google Scholar 

  35. Bikle DD, Morey-Holton ER, Doty SB, Currier PA, Tanner SJ, Halloran BP (1994) Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage. J Bone Miner Res 9:1777–1787

    Article  CAS  PubMed  Google Scholar 

  36. Machwate M, Zerath E, Holy X, Hott M, Modrowski D, Malouvier A, Marie PJ (1993) Skeletal unloading in rat decreases proliferation of rat bone and marrow-derived osteoblastic cells. Am J Physiol 264:E790–E799

    CAS  PubMed  Google Scholar 

  37. Machwate M, Zerath E, Holy X, Pastoureau P, Marie PJ (1994) Insulin-like growth factor-I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Endocrinology 134:1031–1038

    Article  CAS  PubMed  Google Scholar 

  38. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  39. Meyers VE, Zayzafoon M, Douglas JT, McDonald JM (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20:1858–1866

    Article  CAS  PubMed  Google Scholar 

  40. Zayzafoon M, Gathings WE, McDonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145:2421–2432

    Article  CAS  PubMed  Google Scholar 

  41. Meyers VE, Zayzafoon M, Gonda SR, Gathings WE, McDonald JM (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. Cell Biochem 93:697–707

    Article  CAS  Google Scholar 

  42. Zayzafoon M, Meyers VE, McDonald JM (2005) Microgravity: the immune response and bone. Immunol Rev 208:267–280

    Article  CAS  PubMed  Google Scholar 

  43. Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA (2004) The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 279:13984–13992

    Article  CAS  PubMed  Google Scholar 

  44. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480

    Article  CAS  PubMed  Google Scholar 

  45. Feng X (2005) RANKing intracellular signaling in osteoclasts. IUBMB Life 57:389–395

    Article  CAS  PubMed  Google Scholar 

  46. Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M, Vergari R, Grano A, Mancini L, Mori G, Colucci S, Grano M, Zallone A (2009) Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J 23:2549–2554

    Article  CAS  PubMed  Google Scholar 

  47. Monici M, Fusi F, Paglierani M, Marziliano N, Cogoli A, Pratesi R, Bernabei PA (2006) Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells. J Cell Biochem 98:65–80

    Article  CAS  PubMed  Google Scholar 

  48. Monici M, Agati G, Fusi F, Paglierani M, Cogoli A, Bernabei PA (2002) Gravitational unloading induces osteoclast-like differentiation of FLG 29.1 cells. J Gravit Physiol 9:261–262

    Google Scholar 

  49. Seales EC, Micoli KJ, McDonald JM (2006) Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. J Cell Biochem 97:45–55

    Article  CAS  PubMed  Google Scholar 

  50. Zayzafoon M, Fulzele K, McDonald JM (2005) Calmodulin and calmodulin-dependent kinase IIalpha regulate osteoblast differentiation by controlling c-fos expression. J Biol Chem 280:7049–7059

    Article  CAS  PubMed  Google Scholar 

  51. Yeo H, Beck LH, McDonald JM, Zayzafoon M (2007) Cyclosporin A elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Bone (NY) 40:1502–1516

    CAS  Google Scholar 

  52. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615

    Article  PubMed  Google Scholar 

  53. Matsumoto T, Nakayama K, Kodama Y, Fuse H, Nakamura T, Fukumoto S (1998) Effect of mechanical unloading and reloading on periosteal bone formation and gene expression in tail-suspended rapidly growing rats. Bone (NY) 22:89S–93S

    CAS  Google Scholar 

  54. Hefferan TE, Evans GL, Lotinun S, Zhang M, Morey-Holton E, Turner RT (2003) Effect of gender on bone turnover in adult rats during simulated weightlessness. J Appl Physiol 95:1775–1780

    CAS  PubMed  Google Scholar 

  55. Dehority W, Halloran BP, Bikle DD, Curren T, Kostenuik PJ, Wronski TJ, Shen Y, Rabkin B, Bouraoui A, Morey-Holton E (1999) Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol 276:E62–E69

    CAS  PubMed  Google Scholar 

  56. Huang DW, Wan YM, Shi ZZ, Huang ZM, Li YH, Ma YJ (2003) Effects of hindlimb unloading on bone histomorphometry and bone mass in rats (in Chinese). Space Med Med Eng (Beijing) 16:418–421

    Google Scholar 

  57. Li XJ, Jee WS, Chow SY, Woodbury DM (1990) Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study. Anat Rec 227:12–24

    Article  CAS  PubMed  Google Scholar 

  58. Lloyd SA, Travis ND, Lu T, Bateman TA (2008) Development of a low-dose anti-resorptive drug regimen reveals synergistic suppression of bone formation when coupled with disuse. J Appl Physiol 104:729–738

    Article  CAS  PubMed  Google Scholar 

  59. Turner RT, Evans GL, Lotinun S, Lapke PD, Iwaniec UT, Morey-Holton E (2007) Dose-response effects of intermittent PTH on cancellous bone in hindlimb unloaded rats. J Bone Miner Res 22:64–71

    Article  CAS  PubMed  Google Scholar 

  60. Locklin RM, Khosla S, Turner RT, Riggs BL (2003) Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 89:180–190

    Article  CAS  PubMed  Google Scholar 

  61. Hock JM, Gera I (1992) Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res 7:65–72

    Article  CAS  PubMed  Google Scholar 

  62. Ono N, Nakashima K, Schipani E, Hayata T, Ezura Y, Soma K, Kronenberg HM, Noda M (2007) Constitutively active parathyroid hormone receptor signaling in cells in osteoblastic lineage suppresses mechanical unloading-induced bone resorption. J Biol Chem 282:25509–25516

    Article  CAS  PubMed  Google Scholar 

  63. Baek K, Bloomfield SA (2009) Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res 24:792–799

    Article  CAS  PubMed  Google Scholar 

  64. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading via antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health Grants R01 AR050235 and P30 AR046031 and a NASA grant, NNJ04HB27G (NAG 9-1562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. McDonald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

774_2010_201_MOESM1_ESM.tif

Supplementary figure: RAW264.7 cells were incubated overnight in low-adhesion plates. Cells attached around the beads which were then incubated in gravity (G) and modeled microgravity (MMG) for 24h. Figure shows that the cells remain attached around the beads after incubation (10X magnification) (TIFF 518 kb)

About this article

Cite this article

Saxena, R., Pan, G., Dohm, E.D. et al. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis. J Bone Miner Metab 29, 111–122 (2011). https://doi.org/10.1007/s00774-010-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0201-4

Keywords

Navigation