Skip to main content

Advertisement

Log in

Effect of body fat stores on total and regional bone mineral density in perimenopausal Chinese women

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Accumulation of body fat is known to be beneficial to bone mass through increased body weight. However, not all the skeleton is loaded by body weight. Therefore, we assume that fat stores would exert different effects on bone mass at different skeletal sites. In this study, 84 perimenopausal Chinese women were recruited. Using dual-energy X-ray absorptiometry, total body fat mass (TBFM), total body lean mass (TBLM), percent body fat (PBF), and total body and regional bone mineral density (BMD) were measured. Correlation analysis indicated that PBF correlated negatively with BMD at ribs and both arms (all P < 0.05). After adjusting for TBLM, PBF had a significantly negative correlation with BMD at head, ribs, both arms, and whole body (all P < 0.05). With adjustment for body weight and height, a significantly negative correlation between PBF and BMD was present, not only at ribs and arms but also at legs and whole body (all P < 0.05, except right leg, at P = 0.094). There was a significantly positive correlation between body weight and leg BMD (all P < 0.001). Body weight was positively correlated with TBFM (r 2 = 0.783, P < 0.001) and TBLM (r 2 = 0.770, P < 0.001). Based on the results, we conclude that increased body fat stores would exert a detrimental effect on BMD, but this effect is more prominent on non-weight-bearing bone. On weight-bearing bone, the detrimental effect of increased body fat could be offset or outweighed by the beneficial effect of increased body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khosla S, Melton LJIII (2007) Clinical practice. Osteopenia. N Engl J Med 356:2293–2300

    Article  PubMed  CAS  Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  3. Bates DW, Black DM, Cummings SR (2002) Clinical use of bone densitometry: clinical applications. JAMA 288:1898–1900

    Article  PubMed  Google Scholar 

  4. Raisz LG (1988) Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318:818–828

    PubMed  CAS  Google Scholar 

  5. Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20:2492–2506

    Article  PubMed  CAS  Google Scholar 

  6. Park HA, Lee JS, Kuller LH, Cauley JA (2007) Effects of weight control during the menopausal transition on bone mineral density. J Clin Endocrinol Metab 92:3809–3815

    Article  PubMed  CAS  Google Scholar 

  7. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone (NY) 37:474–481

    CAS  Google Scholar 

  8. Liu JM, Zhao HY, Ning G, Zhao YJ, Zhang LZ, Sun LH, Xu MY, Chen JL (2004) Relationship between body composition and bone mineral density in healthy young and premenopausal Chinese women. Osteoporos Int 15:238–242

    Article  PubMed  Google Scholar 

  9. Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73:27–32

    Article  PubMed  CAS  Google Scholar 

  10. Coin A, Sergi G, Beninca P, Lupoli L, Cinti G, Ferrara L, Benedetti G, Tomasi G, Pisent C, Enzi G (2000) Bone mineral density and body composition in underweight and normal elderly subjects. Osteoporos Int 11:1043–1050

    Article  PubMed  CAS  Google Scholar 

  11. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627

    Article  PubMed  CAS  Google Scholar 

  12. Frost HM (1997) Obesity, and bone strength and “mass”: a tutorial based on insights from a new paradigm. Bone (NY) 21:211–214

    CAS  Google Scholar 

  13. Reid IR (2002) Relationships among body mass, its components, and bone. Bone (NY) 31:547–555

    CAS  Google Scholar 

  14. Skerry TM, Suva LJ (2003) Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct 21:223–229

    Article  PubMed  CAS  Google Scholar 

  15. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M (1997) Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 12:144–151

    Article  PubMed  CAS  Google Scholar 

  16. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    PubMed  CAS  Google Scholar 

  17. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL (2000) Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141:2674–2682

    Article  PubMed  CAS  Google Scholar 

  18. Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y (2003) Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab 21:17–21

    Article  PubMed  CAS  Google Scholar 

  19. Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782

    Article  PubMed  CAS  Google Scholar 

  20. Arimatsu M, Kitano T, Kitano N, Inomoto T, Shono M, Futatsuka M (2005) Correlation between forearm bone mineral density and bone composition in Japanese females aged 18–40 years. Environ Health Prev Med 10:144–149

    Article  Google Scholar 

  21. Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC (2000) Percent body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone (NY) 27:203–207

    CAS  Google Scholar 

  22. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  PubMed  CAS  Google Scholar 

  23. Li S, Wagner R, Holm K, Lehotsky J, Zinaman MJ (2004) Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas 47:99–105

    Article  PubMed  Google Scholar 

  24. Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10:1762–1768

    Article  PubMed  CAS  Google Scholar 

  25. Prior JC (1998) Perimenopause: the complex endocrinology of the menopausal transition. Endocr Rev 19:397–428

    Article  PubMed  CAS  Google Scholar 

  26. Burger HG, Dudley EC, Robertson DM, Dennerstein L (2002) Hormonal changes in the menopause transition. Recent Prog Horm Res 57:257–275

    Article  PubMed  CAS  Google Scholar 

  27. Aloia JF, Vaswani A, Russo L, Sheehan M, Flaster E (1995) The influence of menopause and hormonal replacement therapy on body cell mass and body fat mass. Am J Obstet Gynecol 172:896–900

    Article  PubMed  CAS  Google Scholar 

  28. Svendsen OL, Hassager C, Christiansen C (1995) Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism 44:369–373

    Article  PubMed  CAS  Google Scholar 

  29. Bergstrom I, Freyschuss B, Landgren BM (2005) Physical training and hormone replacement therapy reduce the decrease in bone mineral density in perimenopausal women: a pilot study. Osteoporos Int 16:823–828

    Article  PubMed  Google Scholar 

  30. Blake GM, Herd RJ, Patel R, Fogelman I (2000) The effect of weight change on total body dual-energy X-ray absorptiometry: results from a clinical trial. Osteoporos Int 11:832–839

    Article  PubMed  CAS  Google Scholar 

  31. Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES (1995) Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab 80:1118–1123

    Article  PubMed  CAS  Google Scholar 

  32. Young N, Formica C, Szmukler G, Seeman E (1994) Bone density at weight-bearing and nonweight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 78:449–454

    Article  PubMed  CAS  Google Scholar 

  33. Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  34. Forsmo S, Aaen J, Schei B, Langhammer A (2006) What is the influence of weight change on forearm bone mineral density in peri- and postmenopausal women? The health study of Nord-Trondelag, Norway. Am J Epidemiol 164:890–897

    Article  PubMed  Google Scholar 

  35. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJIII, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  36. Black DM, Steinbuch M, Palermo L, Dargent-Molina P, Lindsay R, Hoseyni MS, Johnell O (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12:519–528

    Article  PubMed  CAS  Google Scholar 

  37. Pruzansky ME, Turano M, Luckey M, Senie R (1989) Low body weight as a risk factor for hip fracture in both black and white women. J Orthop Res 7:192–197

    Article  PubMed  CAS  Google Scholar 

  38. Roy DK, O’Neill TW, Finn JD, Lunt M, Silman AJ et al (2003) Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26

    Article  PubMed  CAS  Google Scholar 

  39. Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78

    Article  PubMed  Google Scholar 

  40. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    Article  PubMed  CAS  Google Scholar 

  41. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    Article  PubMed  CAS  Google Scholar 

  42. Duque G (2008) Bone and fat connection in aging bone. Curr Opin Rheumatol 20:429–434

    Article  PubMed  CAS  Google Scholar 

  43. Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M (2007) Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res 22:1720–1731

    Article  PubMed  CAS  Google Scholar 

  44. Schnitzler CM, Mesquita J (1998) Bone marrow composition and bone microarchitecture and turnover in blacks and whites. J Bone Miner Res 13:1300–1307

    Article  PubMed  CAS  Google Scholar 

  45. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  46. Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA, Reszka AA (2004) Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ 11(suppl 1):S108–S118

    Article  PubMed  CAS  Google Scholar 

  47. Tintut Y, Morony S, Demer LL (2004) Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 24:e6–e10

    Article  PubMed  CAS  Google Scholar 

  48. Rico H, Arribas I, Casanova FJ, Duce AM, Hernandez ER, Cortes-Prieto J (2002) Bone mass, bone metabolism, gonadal status and body mass index. Osteoporos Int 13:379–387

    Article  PubMed  CAS  Google Scholar 

  49. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenan Zhu or Shijing Qiu.

About this article

Cite this article

Yu, Z., Zhu, Z., Tang, T. et al. Effect of body fat stores on total and regional bone mineral density in perimenopausal Chinese women. J Bone Miner Metab 27, 341–346 (2009). https://doi.org/10.1007/s00774-009-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0036-z

Keywords

Navigation