Skip to main content

Advertisement

Log in

Micro-CT imaging analysis for the effect of celecoxib, a cyclooxygenase-2 inhibitor, on inflammatory bone destruction in adjuvant arthritis rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Cyclooxygenase (COX)-2 is known to play an important role in the differentiation and maturation of osteoclasts. However, the role of COX-1 in bone metabolism has not been well explored. In this study, the bone-conserving effects of COX-2-specific (celecoxib), COX-nonselective (loxoprofen), and COX-1-specific agents (SC-58560) were compared using an adjuvant-induced arthritis (AIA) rat model. Arthritis was induced by injecting 50 μl liquid paraffin containing 1 mg Mycobacterium butyricum into the left footpad of Lewis rats. Drugs were given orally twice daily for 10 days beginning 15 days after adjuvant injection. Celecoxib was administered at the rate of 3 mg/kg per day, loxoprofen at 3 mg/kg per day, and SC-58560 at 10 mg/kg per day. The therapeutic effects on 3-D architectural bone changes in the arthritic condition, e.g., the bone volume/total tissue volume ratio and the amount of trabecular bone pattern factor, were determined by analyzing the hindpaw calcaneus of AIA rats using microcomputed tomography (micro-CT). In addition, dual-energy X-ray absorptiometry 2-D bone analysis was performed to compare with micro-CT analysis. AIA rats are prone to substantial bone erosion, which allows for significant changes in the 3-D architectural index. This inflammatory bone destruction was suppressed potently by celecoxib, only moderately by loxoprofen, and not at all by SC-58560. These data suggest that COX-2 plays an important role in the inflammatory bone destruction that occurs with rheumatoid arthritis. The results also suggest that COX-2 is more effective than COX-1 at suppressing the destruction of bone associated with arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gravallese EM (2002) Bone destruction in arthritis. Ann Rheum Dis 61(suppl 2):ii84–ii86

    PubMed  Google Scholar 

  2. Walsh NC, Gravallese EM (2004) Bone loss in inflammatory arthritis: mechanisms and treatment strategies. Curr Opin Rheumatol 16:419–427

    Article  PubMed  Google Scholar 

  3. Smith WL, Dewitt DL (1996) Prostaglandin endoperoxide H synthases-1 and-2. Adv Immunol 62:167–215

    Article  PubMed  CAS  Google Scholar 

  4. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  PubMed  CAS  Google Scholar 

  5. Kang RY, Freire-Moar J, Sigal E, Chu CQ (1996) Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. Br J Rheumatol 35:711–718

    Article  PubMed  CAS  Google Scholar 

  6. Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J Clin Invest 97: 2672–2679

    Article  PubMed  CAS  Google Scholar 

  7. Angel J, Berenbaum F, Le Denmat C, Nevalainen T, Masliah J, Fournier C (1994) Interleukin-1-induced prostaglandin E2 biosynthesis in human synovial cells involves the activation of cytosolic phospholipase A2 and cyclooxygenase-2. Eur J Biochem 226: 125–131

    Article  PubMed  CAS  Google Scholar 

  8. Szczepanski A, Moatter T, Carley WW, Gerritsen ME (1994) Induction of cyclooxygenase II in human synovial microvessel endothelial cells by interleukin-1. Inhibition by glucocorticoids. Arthritis Rheum 37:495–503

    Article  PubMed  CAS  Google Scholar 

  9. Tai H, Miyaura C, Pilbeam CC, Tamura T, Ohsugi Y, Koishihara Y, Kubodera N, Kawaguchi H, Raisz LG, Suda T (1997) Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology 138: 2372–2379

    Article  PubMed  CAS  Google Scholar 

  10. Mino T, Yuasa U, Nakamura F, Naka M, Tanaka T (1998) Two distinct actin-binding sites of smooth muscle calponin. Eur J Biochem 251:262–268

    Article  PubMed  CAS  Google Scholar 

  11. Sakuma Y, Tanaka K, Suda M, Komatsu Y, Yasoda A, Miura M, Ozasa A, Narumiya S, Sugimoto Y, Ichikawa A, Ushikubi F, Nakao K (2000) Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect Immun 68:6819–6825

    Article  PubMed  CAS  Google Scholar 

  12. Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG, Pilbeam CC (2000) Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest 105:823–832

    Article  PubMed  CAS  Google Scholar 

  13. Trebino CE, Stock JL, Gibbons CP, Naiman BM, Wachtmann TS, Umland JP, Pandher K, Lapointe JM, Saha S, Roach ML, Carter D, Thomas NA, Durtschi BA, McNeish JD, Hambor JE, Jakobsson PJ, Carty TJ, Perez JR, Audoly LP (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A 100:9044–9049

    Article  PubMed  CAS  Google Scholar 

  14. Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T, Ito A (2003) An essential role of cytosolic phospholipase A2-alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med 197:1303–1310

    Article  PubMed  CAS  Google Scholar 

  15. Suzawa T, Miyaura C, Inada, M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141:1554–1559

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, Raisz LG (2001) Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 141: 2054–2061

    Article  Google Scholar 

  17. Fujita D, Yamashita N, Iita S, Amano H, Yamada S, Sakamoto K (2003) Prostaglandin E2 induced the differentiation of osteoclasts in mouse osteoblast-depleted bone marrow cells. Prostaglandins Leukot Essent Fatty Acids 68:351–358

    Article  PubMed  CAS  Google Scholar 

  18. Liu XH, Kirschenbaum A, Yao S, Levine AC (2006) Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Endocrinology 1068:225–233

    CAS  Google Scholar 

  19. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  20. O’Brien EA, Williams JH, Marshall MJ (2001) Osteoprotegerin is produced when prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane. Bone (NY) 28:208–214

    CAS  Google Scholar 

  21. Suda K, Udagawa N, Sato N, Takami M, Itoh K, Woo JT, Takahashi N, Nagai K (2004) Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharideinduced osteoclast formation. J Immunol 172:2504–2510

    PubMed  CAS  Google Scholar 

  22. Morgan SL, Chen DT, Carlee J, Baggott JE (2004) Effect of methotrexate therapy on bone mineral density and body composition in rat adjuvant arthritis. J Rheumatol 31:1693–1697

    PubMed  CAS  Google Scholar 

  23. Badger AM, Blake S, Kapadia R, Sarkar S, Levin J, Swift BA, Hoffman SJ, Stroup GB, Miller WH, Gowen M, Lark MW (2001) Disease-modifying activity of SB 273005, an orally active, nonpeptide alphavbeta3 (vitronectin receptor) antagonist, in rat adjuvantinduced arthritis. Arthritis Rheum 44:128–137

    Article  PubMed  CAS  Google Scholar 

  24. Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvant. Proc Soc Exp Biol Med 91: 95–101

    PubMed  CAS  Google Scholar 

  25. Pearson CM, Wood FD (1959) Studies of polyarthritis and other lesions induced in rats by injection of mycobacterial adjuvant: I. General clinical and pathologic characteristics and some modifying factors. Arthritis Rheum 2:440–459

    Article  Google Scholar 

  26. Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley JJ, Masferrer JL, Seibert K, Isakson PC (1998) Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci U S A 95:13313–13318

    Article  PubMed  CAS  Google Scholar 

  27. Noguchi M, Kimoto A, Gierse JK, Walker MC, Zweifel BS, Nozaki K, Sasamata M (2005) Enzymologic and pharmacologic profile of loxoprofen sodium and its metabolites. Biol Pharm Bull 28:2075–2079

    Article  PubMed  CAS  Google Scholar 

  28. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci U S A 91:3228–3232

    Article  PubMed  CAS  Google Scholar 

  29. Gierse JK, Zhang Y, Hood WF, Walker MC, Trigg JS, Maziasz TJ, Koboldt CM, Muhammad JL, Zweifel BS, Masferrer JL, Isakson PC, Seibert K (2005) Valdecoxib: assessment of cyclooxygenase-2 potency and selectivity. J Pharmacol Exp Ther 312:1206–1212

    Article  PubMed  CAS  Google Scholar 

  30. Noguchi M, Kimoto A, Kobayashi S, Yoshino T, Miyata K, Sasamata M (2005) Effect of celecoxib, a cyclooxygenase-2 inhibitor, on the pathophysiology of adjuvant arthritis in rat. Eur J Pharmacol 513:229–235

    Article  PubMed  CAS  Google Scholar 

  31. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T (2002) Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone (NY) 31:351–358

    CAS  Google Scholar 

  32. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture. Bone (NY) 13:327–330

    CAS  Google Scholar 

  33. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, Orimo H (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836

    Article  PubMed  Google Scholar 

  34. Bonde M, Garnero P, Fledelius C, Qvist P, Delmas PD, Christiansen C (1996) Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the C-telopeptide of type I collagen. J Bone Miner Res 12:1028–1034

    Article  Google Scholar 

  35. Breuil V, Cosman F, Stein L, Horbert W, Nieves J, Shen V, Lindsav R, Dampster DW (1998) Human osteoclast formation and activity in vitro: effects of alendronate. J Bone Miner Res 13:1721–1729

    Article  PubMed  CAS  Google Scholar 

  36. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P, Christiansen C (1998) Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 44:2281–2289

    CAS  Google Scholar 

  37. Abbate F, Casini A, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with a topically acting antiglaucoma sulfonamide. Bioorg Med Chem Lett 14:2357–2361

    Article  PubMed  CAS  Google Scholar 

  38. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557

    Article  PubMed  CAS  Google Scholar 

  39. Katagiri M, Ogasawara T, Hoshi K, Chikazu D, Kimoto A, Noguchi M, Sasamata M, Harada S, Akama H, Tazaki H, Chung UI, Takato T, Nakamura K, Kawaguchi H (2006) Suppression of adjuvantinduced arthritic bone destruction by cyclooxygenase-2 selective agents with and without inhibitory potency against carbonic anhydrase II. J Bone Miner Res 21:219–227

    Article  PubMed  CAS  Google Scholar 

  40. Kusunoki N, Yamazaki R, Kawai S (2002) Induction of apoptosis in rheumatoid synovial fibroblasts by celecoxib, but not by other selective cyclooxygenase 2 inhibitors. Arthritis Rheum 46:3159–3167

    Article  PubMed  CAS  Google Scholar 

  41. Sugatani T, Hruska KA (2005) Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem 280:3583–3589

    Article  PubMed  CAS  Google Scholar 

  42. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS (2000) The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403

    Article  PubMed  CAS  Google Scholar 

  43. El Hajjaji H, Marcelis A, Devogelaer JP, Manicourt DH (2003) Celecoxib has a positive effect on the overall metabolism of hyaluronan and proteoglycans in human osteoarthritic cartilage. J Rheumatol 30:2444–2451

    PubMed  Google Scholar 

  44. Mastbergen SC, Jansen NW, Bijlsma JW, Lafeber FP (2006) Differential direct effects of cyclo-oxygenase-1/2 inhibition on proteoglycan turnover of human osteoarthritic cartilage: an in vitro study. Arthritis Res Ther 8:R2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Noguchi.

About this article

Cite this article

Noguchi, M., Kimoto, A., Sasamata, M. et al. Micro-CT imaging analysis for the effect of celecoxib, a cyclooxygenase-2 inhibitor, on inflammatory bone destruction in adjuvant arthritis rats. J Bone Miner Metab 26, 461–468 (2008). https://doi.org/10.1007/s00774-008-0855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0855-3

Key words

Navigation