Skip to main content
Log in

Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross-sectional study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

We studied 278 adolescents (169 females) aged 13.0–18.5 years to elucidate whether an independent effect of physical fitness and lean mass in the differences between male and female bones can be detected. Lean and fat masses and bone mineral content (BMC) were measured with DXA. Physical fitness was evaluated with six different tests included in the EUROFIT test battery (flexibility, isometric, dynamic and endurance strength, speed, and cardiovascular fitness). To test the independent relationship between physical fitness and bone mass, multiple regression analysis was applied, including lean mass, age, and Tanner development as covariates. The males had a 43% lower fat mass and 40% and 16% higher lean mass and total BMC compared with the females (all P < 0.05). After adjustment for differences in body size and lean mass, the females exhibited a 7.4% higher BMC than the males (P < 0.05). The multiple regression analysis showed that lean mass had an independent relationship with bone mass (P < 0.001), explaining 67% of the total variance in whole-body BMC. In males, change in R 2 was 0.658 for hand grip and 0.035–0.151 for the rest of physical fitness-related variables; but 0.019–0.042 in females (all P–0.001); however, the independent relationships between physical fitness and bone disappeared after controlling for lean mass. In conclusion, it is likely the differences between male and female in bone mass could be explained by differences in lean mass and physical fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper C (1999) Epidemiology of osteoporosis. Osteoporos Int 9: S2–S8.

    Article  PubMed  Google Scholar 

  2. World Health Organization. Available at http://www.who.int/archives/world-health-day/dg_statement.pdf

  3. Kelly PJ, Eisman JA, Sambrook PN (1990) Interaction of genetic and environmental influences on peak bone density. Osteoporos Int 1:56–60

    Article  PubMed  CAS  Google Scholar 

  4. Heinonen A (2001) Biomechanics. In: Khan K, McKay H, Kannus P, Bailey D, Wark J, Bennell K (eds) Physical Activity and Bone Health. Human Kinetics, Champaign, IL, pp 23–34

    Google Scholar 

  5. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233

    PubMed  CAS  Google Scholar 

  6. Babaroutsi E, Magkos F, Manios Y, Sidossis LS (2005) Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab 23:157–166

    Article  PubMed  Google Scholar 

  7. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res 14:1672–1679

    Article  PubMed  CAS  Google Scholar 

  8. Gustavsson A, Thorsen K, Nordstrom P (2003) A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int 73:108–114

    Article  PubMed  CAS  Google Scholar 

  9. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Serrano-Sanchez JA, Calbet JAL (2004) High femoral bone mineral density accretion in prepuberal football players. Med Sci Sports Exerc 33:1789–1795

    Article  Google Scholar 

  10. Uzunca K, Birtane M, Durmus-Altun G, Ustun F (2005) High bone mineral density in loaded skeletal regions of former professional football (soccer) players: what is the effect of time after active career? Br J Sports Med 39:154–157

    Article  PubMed  CAS  Google Scholar 

  11. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    Article  PubMed  CAS  Google Scholar 

  12. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821

    Article  PubMed  CAS  Google Scholar 

  13. Przeweda R, Dobosz J (2003) Growth and physical fitness of Polish youths in two successive decades. J Sports Med Phys Fitness 43:465–474

    PubMed  CAS  Google Scholar 

  14. EUROFIT CoEoSR (1993) Handbook for the EUROFIT Test of Physical Fitness. Strasbourg

  15. Ortega FB, Ruiz JR, Castillo MJ, Moreno LA, Gonzalez-Gross M, Warnberg J, Gutierrez A (2005) Low level of physical fitness in Spanish adolescents. Relevance for future cardiovascular health (AVENA study). Rev Esp Cardiol 58:898–909

    Article  PubMed  Google Scholar 

  16. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone (NY) 33:853–859

    CAS  Google Scholar 

  17. Vicente-Rodriguez G, Dorado C, Perez-Gomez J, Gonzalez-Henriquez JJ, Calbet JA (2004) Enhanced bone mass and physical fitness in young female handball players. Bone (NY) 35:1208–1215

    CAS  Google Scholar 

  18. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JAL (2005) Muscular development and physical activity are major determinants of femoral bone mass acquisition during growth. Br J Sports Med 39:611–616

    Article  PubMed  CAS  Google Scholar 

  19. Courteix D, Lespessailles E, Loiseau-Peres S, Obert P, Ferry B, Benhamou CL (1998) Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls. Rev Rhum Engl Ed 65:328–336

    PubMed  CAS  Google Scholar 

  20. Kim J, Shen W, Gallagher D, Jones A Jr, Wang Z, Wang J, Heshka S, Heymsfield SB (2006) Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents. Am J Clin Nutr 84:1014–1020

    PubMed  CAS  Google Scholar 

  21. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone (NY) 34:771–775

    Google Scholar 

  22. Schoenau E, Frost HM (2002) The “muscle-bone unit” in children and adolescents. Calcif Tissue Int 70:405–407

    Article  PubMed  CAS  Google Scholar 

  23. Seeman E (2001) Clinical review 137: sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  PubMed  CAS  Google Scholar 

  24. Moreno LA, Mesana MI, Fleta J, Ruiz JR, Gonzalez-Gross M, Sarria A, Marcos A, Bueno M (2005) Overweight, obesity and body fat composition in Spanish adolescents. The AVENA Study. Ann Nutr Metab 49:71–76

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez-Gross M, Castillo MJ, Moreno L, Nova E, Gonzalez-Lamuno D, Perez-Llamas F, Gutierrez A, Garaulet M, Joyanes M, Leiva A, Marcos A (2003) Feeding and assessment of nutritional status of panish adolescents (AVENA study). Evaluation of risks and interventional proposal. I. Methodology. Nutr Hosp 18:15–28

    PubMed  CAS  Google Scholar 

  26. Moreno LA, Fleta J, Mur L, Feja C, Sarria A, Bueno M (1997) Indices of body fat distribution in Spanish children aged 4.0 to 14.9 years. J Pediatr Gastroenterol Nutr 25:175–181

    Article  PubMed  CAS  Google Scholar 

  27. Lunar (1993) LUNAR Operation Manual, Version 1.5e. Lunar Radiation Corp., Madison, WI

    Google Scholar 

  28. Instituto de Ciencias de la Educación Física y el Deporte (1992) EUROFIT. Test europeo de aptitud física. Ministerio de Educación y Ciencia, Madrid

    Google Scholar 

  29. Leger LA, Mercier D, Gadoury C, Lambert J (1988) The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 6:93–101.

    PubMed  CAS  Google Scholar 

  30. Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones AD, Uusi-Rasi K (2004) Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone (NY) 35:973–981

    Google Scholar 

  31. Pietrobelli A, Faith MS, Wang J, Brambilla P, Chiumello G, Heymsfield SB (2002) Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes Res 10: 56–60

    Article  PubMed  Google Scholar 

  32. Rodriguez Martinez G, Blay G, Blay VA, Moreno LA, Bueno M (2002) Association of fat mass with bone mineral content in female adolescents. Obes Res 10:715

    PubMed  Google Scholar 

  33. Young D, Hopper JL, Macinnis RJ, Nowson CA, Hoang NH, Wark JD (2001) Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8-to 26-year-old female twins. Osteoporos Int 12:506–515

    Article  PubMed  CAS  Google Scholar 

  34. Jarvinen TL, Kannus P, Pajamaki I, Vuohelainen T, Tuukkanen J, Jarvinen M, Sievanen H (2003) Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone (NY) 32:642–651

    CAS  Google Scholar 

  35. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Ehsani AA, Holloszy JO (2007) Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J Appl Physiol 102:634–640

    Article  PubMed  Google Scholar 

  36. Ackerman A, Thornton JC, Wang J, Pierson RN Jr, Horlick M (2006) Sex difference in the effect of puberty on the relationship between fat mass and bone mass in 926 healthy subjects, 6 to 18 years old. Obesity (Silver Spring) 14:819–825

    Article  Google Scholar 

  37. Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, Cheng S (2007) Weight-bearing, muscle loading and bone mineral accrual in pubertal girls: a 2-year longitudinal study. Bone (NY) 40:1196–1202

    Google Scholar 

  38. Komi PV (1992) Strength and Power in Sport. Blackwell, Boston

    Google Scholar 

  39. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  PubMed  CAS  Google Scholar 

  40. Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L, Ritenbaugh C, Bare L, Hill A, Aickin M (1995) Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 10:1015–1024

    Article  PubMed  CAS  Google Scholar 

  41. Van Praagh E, Dore E (2002) Short-term muscle power during growth and maturation. Sports Med 32:701–728

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Germán Vicente-Rodríguez.

About this article

Cite this article

Vicente-Rodríguez, G., Urzanqui, A., Mesana, M.I. et al. Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross-sectional study. J Bone Miner Metab 26, 288–294 (2008). https://doi.org/10.1007/s00774-007-0818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0818-0

Key words

Navigation