Skip to main content

Advertisement

Log in

Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic

  • ORIGINAL ARTICLE
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Synthetic porous ceramic made of hydroxyapatite (HA) has been used as a bone graft substitute. In the present study we investigated whether low-intensity pulsed ultrasound (LIPUS) accelerates bone ingrowth into the pores of HA ceramic. Application of LIPUS did not mechanically weaken porous ceramic that was immersed in water in vitro. In vivo experiments using rabbits showed that LIPUS application for 2 weeks significantly increased osteoblast number and bone area in the central part of the porous HA ceramic implanted in the femoral condyle in comparison with similarly implanted HA ceramic that was not exposed to LIPUS. LIPUS application for 3 weeks significantly increased mineralized tissue volume and mineral content in the porous HA ceramic. Wound healing assays revealed increased migration of MC3T3-E1 cells as a result of LIPUS treatment, partly accounting for the increased osteoblast number. Use of porous HA ceramic combined with LIPUS may be a promising treatment for filling large bone defects in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Mastrogiacomo A Muraglia V Komlev F Peyrin F Rustichelli A Crovace R Cancedda (2005) ArticleTitleTissue engineering of bone: search for a better scaffold Orthodont Craniofac Res 8 277–284 Occurrence Handle10.1111/j.1601-6343.2005.00350.x Occurrence Handle1:STN:280:DC%2BD2MnisVekug%3D%3D

    Article  CAS  Google Scholar 

  2. N Tamai A Myoui T Tomita T Nakase J Tanaka T Ochi H Yoshikawa (2002) ArticleTitleNovel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo J Biomed Mater Res 59 110–117 Occurrence Handle11745543 Occurrence Handle10.1002/jbm.1222 Occurrence Handle1:CAS:528:DC%2BD3MXptVejsr8%3D

    Article  PubMed  CAS  Google Scholar 

  3. K Rezwan QZ Chen JJ Blaker AR Boccaccini (2006) ArticleTitleBiodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering Biomaterials 27 3413–3431 Occurrence Handle16504284 Occurrence Handle10.1016/j.biomaterials.2006.01.039 Occurrence Handle1:CAS:528:DC%2BD28XisFCjtrw%3D

    Article  PubMed  CAS  Google Scholar 

  4. M Fini G Giavaresi S Setti L Martini P Torricelli R Giardino (2004) ArticleTitleCurrent trends in the enhancement of biomaterial osteointegration: biophysical stimulation Int J Artif Organs 27 681–690 Occurrence Handle15478539 Occurrence Handle1:CAS:528:DC%2BD2cXhtVentrvO

    PubMed  CAS  Google Scholar 

  5. S Itoh S Nakamura M Nakamura K Shinomiya K Yamashita (2006) ArticleTitleEnhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization Biomaterials 27 5572–5579 Occurrence Handle16876861 Occurrence Handle10.1016/j.biomaterials.2006.07.007 Occurrence Handle1:CAS:528:DC%2BD28XotVartLw%3D

    Article  PubMed  CAS  Google Scholar 

  6. S Zhou A Schmelz T Seufferlein Y Li J Zhao MG Bachem (2004) ArticleTitleMolecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts J Biol Chem 279 54463–54469 Occurrence Handle15485877 Occurrence Handle10.1074/jbc.M404786200 Occurrence Handle1:CAS:528:DC%2BD2cXhtVyltbfM

    Article  PubMed  CAS  Google Scholar 

  7. J Wolff (1986) The Law of Bone Remodeling (Maquet P, Furlong R, transl) Springer New York

    Google Scholar 

  8. R Huiskes R Ruimerman GH van Lenthe JD Janssen (2000) ArticleTitleEffects of mechanical forces on maintenance and adaptation of form in trabecular bone Nature (Lond) 405 704–706 Occurrence Handle10.1038/35015116 Occurrence Handle1:CAS:528:DC%2BD3cXktlGnsbo%3D

    Article  CAS  Google Scholar 

  9. KH Yang SJ Park (2001) ArticleTitleStimulation of fracture healing in a canine ulna full-defect model by low-intensity pulsed ultrasound Yonsei Med J 42 503–508 Occurrence Handle11675678 Occurrence Handle1:STN:280:DC%2BD3MrmvVKqtQ%3D%3D

    PubMed  CAS  Google Scholar 

  10. KH Yang J Parvizi SJ Wang DG Lewallen RR Kinnick JF Greenleaf ME Bolander (1996) ArticleTitleExposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model J Orthop Res 14 802–809 Occurrence Handle8893775 Occurrence Handle10.1002/jor.1100140518 Occurrence Handle1:STN:280:ByiD2cbgsVE%3D

    Article  PubMed  CAS  Google Scholar 

  11. C Rubin M Bolander JP Ryaby M Hadjiargyrou (2001) ArticleTitleThe use of low-intensity ultrasound to accelerate the healing of fractures J Bone Joint Surg [Am] 83A 259–270

    Google Scholar 

  12. JD Heckman J Sarasohn-Kahn (1997) ArticleTitleThe economics of treating tibia fractures. The cost of delayed unions Bull Hosp Jt Dis 56 63–72 Occurrence Handle9063607 Occurrence Handle1:STN:280:ByiB3MjmsVI%3D

    PubMed  CAS  Google Scholar 

  13. JD Heckman JP Ryaby J McCabe JJ Frey RF Kilcoyne (1994) ArticleTitleAcceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound J Bone Joint Surg Am 76 26–34 Occurrence Handle8288661 Occurrence Handle1:STN:280:ByuC3Mjlt1w%3D

    PubMed  CAS  Google Scholar 

  14. TK Kristiansen JP Ryaby J McCabe JJ Frey LR Roe (1997) ArticleTitleAccelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study J Bone Joint Surg [Am] 79 961–973 Occurrence Handle1:STN:280:ByiA2sfhvFU%3D

    CAS  Google Scholar 

  15. N Tsumaki M Kakiuchi J Sasaki T Ochi H Yoshikawa (2004) ArticleTitleLow-intensity pulsed ultrasound accelerates maturation of callus in patients treated with opening-wedge high tibial osteotomy by hemicallotasis J Bone Joint Surg [Am] 86A 2399–2405

    Google Scholar 

  16. S Iwabuchi M Ito J Hata T Chikanishi Y Azuma H Haro (2005) ArticleTitleIn vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption Biomaterials 26 7104–7114 Occurrence Handle15964624 Occurrence Handle10.1016/j.biomaterials.2005.05.004 Occurrence Handle1:CAS:528:DC%2BD2MXmvFCqurY%3D

    Article  PubMed  CAS  Google Scholar 

  17. LG Rodriguez X Wu JL Guan (2005) ArticleTitleWound-healing assay Methods Mol Biol 294 23–29 Occurrence Handle15576902

    PubMed  Google Scholar 

  18. M Mehrotra SM Krane K Walters C Pilbeam (2004) ArticleTitleDifferential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells J Cell Biochem 93 741–752 Occurrence Handle15660418 Occurrence Handle10.1002/jcb.20138 Occurrence Handle1:CAS:528:DC%2BD2cXpvVCgtbY%3D

    Article  PubMed  CAS  Google Scholar 

  19. M Nishikawa A Myoui H Ohgushi M Ikeuchi N Tamai H Yoshikawa (2004) ArticleTitleBone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis Cell Transplant 13 367–376 Occurrence Handle15468678

    PubMed  Google Scholar 

  20. L Handolin T Pohjonen EK Partio I Arnala P Tormala P Rokkanen (2002) ArticleTitleThe effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly L-lactide screws Biomaterials 23 2733–2736 Occurrence Handle12059023 Occurrence Handle10.1016/S0142-9612(02)00006-6 Occurrence Handle1:CAS:528:DC%2BD38XjsVSqsbo%3D

    Article  PubMed  CAS  Google Scholar 

  21. FH Lin CC Lin CM Lu HC Liu CY Wang (1995) ArticleTitleThe effects of ultrasonic stimulation on DP-bioglass bone substitute Med Eng Phys 17 20–26 Occurrence Handle7704339 Occurrence Handle10.1016/1350-4533(95)90373-J Occurrence Handle1:STN:280:ByqB3MbhvVc%3D

    Article  PubMed  CAS  Google Scholar 

  22. M Tanzer E Harvey A Kay P Morton JD Bobyn (1996) ArticleTitleEffect of noninvasive low intensity ultrasound on bone growth into porous-coated implants J Orthop Res 14 901–906 Occurrence Handle8982132 Occurrence Handle10.1002/jor.1100140609 Occurrence Handle1:STN:280:ByiC3snnsFE%3D

    Article  PubMed  CAS  Google Scholar 

  23. M Tanzer S Kantor JD Bobyn (2001) ArticleTitleEnhancement of bone growth into porous intramedullary implants using non-invasive low intensity ultrasound J Orthop Res 19 195–199 Occurrence Handle11347690 Occurrence Handle10.1016/S0736-0266(00)00034-6 Occurrence Handle1:STN:280:DC%2BD3M3ovFSisg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  24. NM Rawool BB Goldberg F Forsberg AA Winder E Hume (2003) ArticleTitlePower Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound J Ultrasound Med 22 145–153 Occurrence Handle12562119

    PubMed  Google Scholar 

  25. K Naruse A Miyauchi M Itoman Y Mikuni-Takagaki (2003) ArticleTitleDistinct anabolic response of osteoblast to low-intensity pulsed ultrasound J Bone Miner Res 18 360–369 Occurrence Handle12568414 Occurrence Handle10.1359/jbmr.2003.18.2.360 Occurrence Handle1:CAS:528:DC%2BD3sXht1Sktrg%3D

    Article  PubMed  CAS  Google Scholar 

  26. JK Li WH Chang JC Lin RC Ruaan HC Liu JS Sun (2003) ArticleTitleCytokine release from osteoblasts in response to ultrasound stimulation Biomaterials 24 2379–2385 Occurrence Handle12699675 Occurrence Handle10.1016/S0142-9612(03)00033-4 Occurrence Handle1:CAS:528:DC%2BD3sXivVCqsb8%3D

    Article  PubMed  CAS  Google Scholar 

  27. M Ito Y Azuma T Ohta K Komoriya (2000) ArticleTitleEffects of ultrasound and 1,25-dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells Ultrasound Med Biol 26 161–166 Occurrence Handle10687804 Occurrence Handle10.1016/S0301-5629(99)00110-6 Occurrence Handle1:STN:280:DC%2BD3c7ltVGisA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  28. T Kokubu N Matsui H Fujioka M Tsunoda K Mizuno (1999) ArticleTitleLow intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts Biochem Biophys Res Commun 256 284–287 Occurrence Handle10079177 Occurrence Handle10.1006/bbrc.1999.0318 Occurrence Handle1:CAS:528:DyaK1MXhvVaiurk%3D

    Article  PubMed  CAS  Google Scholar 

  29. A Shimazaki K Inui Y Azuma N Nishimura Y Yamano (2000) ArticleTitleLow-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits J Bone Joint Surg [Br] 82 1077–1082 Occurrence Handle10.1302/0301-620X.82B7.9948 Occurrence Handle1:STN:280:DC%2BD3cvptVeguw%3D%3D

    Article  CAS  Google Scholar 

  30. JE Tis CR Meffert N Inoue EF McCarthy MS Machen KA McHale EY Chao (2002) ArticleTitleThe effect of low intensity pulsed ultrasound applied to rabbit tibiae during the consolidation phase of distraction osteogenesis J Orthop Res 20 793–800 Occurrence Handle12168669 Occurrence Handle10.1016/S0736-0266(02)00003-7

    Article  PubMed  Google Scholar 

  31. CP Eberson KA Hogan DC Moore MG Ehrlich (2003) ArticleTitleEffect of low-intensity ultrasound stimulation on consolidation of the regenerate zone in a rat model of distraction osteogenesis J Pediatr Orthop 23 46–51 Occurrence Handle12499942 Occurrence Handle10.1097/00004694-200301000-00009

    Article  PubMed  Google Scholar 

  32. MG Uglow RA Peat MS Hile LE Bilston EJ Smith DG Little (2003) ArticleTitleLow-intensity ultrasound stimulation in distraction osteogenesis in rabbits Clin Orthop 417 303–312 Occurrence Handle14646730

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Tsumaki.

About this article

Cite this article

Iwai, T., Harada, Y., Imura, K. et al. Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J Bone Miner Metab 25, 392–399 (2007). https://doi.org/10.1007/s00774-007-0777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0777-5

Key words

Navigation