Skip to main content

Advertisement

Log in

Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood

  • ORIGINAL ARTICLE
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone resorption is solely mediated by osteoclasts. Therefore, a pure osteoclast population is of high interest for the investigation of biological aspects of the osteoclasts, such as the direct effect of growth factors and hormones, as well as for testing and characterizing inhibitors of bone resorption. We have established a pure, stable, and reproducible system for purification of human osteoclasts from peripheral blood. We isolated CD14-positive (CD14+) monocytes using anti-CD14-coated beads. After isolation, the monocytes are differentiated into mature osteoclasts by stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). Osteoclast formation was only observed in the CD14+ population, not in the CD14− population, and only in the presence of both M-CSF and RANKL, confirming that the CD14+ system is a pure population of osteoclast precursors. No expression of osteoclast markers was observed in the absence of RANKL, whereas RANKL dose-dependently induced the expression of cathepsin K, tartrate-resistant acid phosphatase (TRACP), and matrix metallo proteinase (MMP)-9. Furthermore, morphological characterization of the cells demonstrated that actin rings were only formed in the presence of RANKL. Moreover, the osteoclasts were capable of forming acidic resorption lacunae, and inhibitors of lysosomal acidification attenuated this process. Finally, we measured the response to known bone resorption inhibitors, and found that the osteoclasts were sensitive to these and thereby provided a robust and valid method for interpretation of the effect of antiresorptive compounds. In conclusion, we have established a robust assay for developing osteoclasts that can be used to study several biological aspects of the osteoclasts and which in combination with the resorption marker CTX-I provides a useful tool for evaluating osteoclast function in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Baron (2003) General principles of bone biology BibInstitutionalEditorNameThe American Society for Bone and Mineral Research (Eds) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism Lippincott-Raven New York 1–9

    Google Scholar 

  2. SC Marks DC Hermey (1996) The structure and development of bone JP Bilezikian LG Raisz GA Rodan (Eds) Principles of Bone Biology Academic Press San Diego 3–14

    Google Scholar 

  3. HK Vaananen (1993) ArticleTitleMechanism of bone turnover Ann Med 25 353–359 Occurrence Handle8217101 Occurrence Handle1:STN:280:DyaK2c%2FjtV2mtA%3D%3D

    PubMed  CAS  Google Scholar 

  4. GR Mundy (1996) Bone-resorbing cells BibInstitutionalEditorNameThe American Society for Bone and Mineral Research (Eds) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism Lippincott-Raven New York 16–24

    Google Scholar 

  5. T Suda N Udagawa N Takahashi (1996) Cells of bone: osteoclast generation JP Bilezikian LG Raisz GA Rodan (Eds) Principles of Bone Biology Academic press San Diego 87–102

    Google Scholar 

  6. R Baron L Neff VP Tran JR Nefussi A Vignery (1986) ArticleTitleKinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts Am J Pathol 122 363–378 Occurrence Handle3946557 Occurrence Handle1:STN:280:DyaL287islKgsg%3D%3D

    PubMed  CAS  Google Scholar 

  7. KJ Ibbotson GD Roodman LM McManus GR Mundy (1984) ArticleTitleIdentification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells J Cell Biol 99 471–480 Occurrence Handle6589224 Occurrence Handle10.1083/jcb.99.2.471 Occurrence Handle1:CAS:528:DyaL2cXlvVyqsbg%3D

    Article  PubMed  CAS  Google Scholar 

  8. P Osdoby MC Martini AI Caplan (1982) ArticleTitleIsolated osteoclasts and their presumed progenitor cells, the monocyte, in culture J Exp Zool 224 331–344 Occurrence Handle7153726 Occurrence Handle10.1002/jez.1402240306 Occurrence Handle1:STN:280:DyaL3s7htVyhtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  9. DL Lacey E Timms HL Tan MJ Kelley CR Dunstan T Burgess R Elliott A Colombero G Elliott S Scully H Hsu J Sullivan N Hawkins E Davy C Capparelli A Eli YX Qian S Kaufman I Sarosi V Shalhoub G Senaldi J Guo J Delaney WJ Boyle (1998) ArticleTitleOsteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation Cell 93 165–176 Occurrence Handle9568710 Occurrence Handle10.1016/S0092-8674(00)81569-X Occurrence Handle1:CAS:528:DyaK1cXivVyhtrg%3D

    Article  PubMed  CAS  Google Scholar 

  10. GD Roodman (1999) ArticleTitleCell biology of the osteoclast Exp Hematol 27 1229–1241 Occurrence Handle10428500 Occurrence Handle10.1016/S0301-472X(99)00061-2 Occurrence Handle1:STN:280:DyaK1MzlsFCmtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  11. SL Teitelbaum (2000) ArticleTitleBone resorption by osteoclasts Science 289 1504–1508 Occurrence Handle10968780 Occurrence Handle10.1126/science.289.5484.1504 Occurrence Handle1:CAS:528:DC%2BD3cXmt1KgsLk%3D

    Article  PubMed  CAS  Google Scholar 

  12. PT Lakkakorpi HK Vaananen (1996) ArticleTitleCytoskeletal changes in osteoclasts during the resorption cycle Microsc Res Tech 33 171–181 Occurrence Handle8845516 Occurrence Handle10.1002/(SICI)1097-0029(19960201)33:2<171::AID-JEMT7>3.0.CO;2-W Occurrence Handle1:CAS:528:DyaK28Xpt1Orug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  13. HK Vaananen M Horton (1995) ArticleTitleThe osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure J Cell Sci 108 IssueIDpt 8 2729–2732 Occurrence Handle7593313 Occurrence Handle1:CAS:528:DyaK2MXns1ahsLg%3D

    PubMed  CAS  Google Scholar 

  14. P Lakkakorpi J Tuukkanen T Hentunen K Jarvelin K Vaananen (1989) ArticleTitleOrganization of osteoclast microfilaments during the attachment to bone surface in vitro J Bone Miner Res 4 817–825 Occurrence Handle2692403 Occurrence Handle1:CAS:528:DyaK3cXps1Wksw%3D%3D Occurrence Handle10.1002/jbmr.5650040605

    Article  PubMed  CAS  Google Scholar 

  15. K Väänänen (1996) Osteoclast function: biology and mechanisms JP Bilezikian LG Raisz GA Rodan (Eds) Principles of Bone Biology Academic Press San Diego 103–113

    Google Scholar 

  16. R Baron L Neff D Louvard PJ Courtoy (1985) ArticleTitleCell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border J Cell Biol 101 2210–2222 Occurrence Handle3905822 Occurrence Handle10.1083/jcb.101.6.2210 Occurrence Handle1:CAS:528:DyaL28Xjt1ahuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  17. YP Li W Chen Y Liang E Li P Stashenko (1999) ArticleTitleAtp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification Nat Genet 23 447–451 Occurrence Handle10581033 Occurrence Handle10.1038/70563 Occurrence Handle1:CAS:528:DyaK1MXnvFOktbc%3D

    Article  PubMed  CAS  Google Scholar 

  18. A Taranta S Migliaccio I Recchia M Caniglia M Luciani G De Rossi C Dionisi-Vici RM Pinto P Francalanci R Boldrini E Lanino G Dini G Morreale SH Ralston A Villa P Vezzoni D Del Principe F Cassiani G Palumbo A Teti (2003) ArticleTitleGenotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis Am J Pathol 162 57–68 Occurrence Handle12507890 Occurrence Handle1:CAS:528:DC%2BD3sXlsFyruw%3D%3D

    PubMed  CAS  Google Scholar 

  19. K Sundquist P Lakkakorpi B Wallmark K Vaananen (1990) ArticleTitleInhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption Biochem Biophys Res Commun 168 309–313 Occurrence Handle2139331 Occurrence Handle10.1016/0006-291X(90)91709-2 Occurrence Handle1:CAS:528:DyaK3cXitlarsbc%3D

    Article  PubMed  CAS  Google Scholar 

  20. Q al Awqati (1995) ArticleTitleChloride channels of intracellular organelles Curr Opin Cell Biol 7 504–508 Occurrence Handle7495569 Occurrence Handle10.1016/0955-0674(95)80006-9 Occurrence Handle1:CAS:528:DyaK2MXntlertrs%3D

    Article  PubMed  CAS  Google Scholar 

  21. PH Schlesinger HC Blair SL Teitelbaum JC Edwards (1997) ArticleTitleCharacterization of the osteoclast ruffled border chloride channel and its role in bone resorption J Biol Chem 272 18636–18643 Occurrence Handle9228032 Occurrence Handle10.1074/jbc.272.30.18636 Occurrence Handle1:CAS:528:DyaK2sXltVSgsr4%3D

    Article  PubMed  CAS  Google Scholar 

  22. T Toyomura T Oka C Yamaguchi Y Wada M Futai (2000) ArticleTitleThree subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation J Biol Chem 275 8760–8765 Occurrence Handle10722719 Occurrence Handle10.1074/jbc.275.12.8760 Occurrence Handle1:CAS:528:DC%2BD3cXit1emsL8%3D

    Article  PubMed  CAS  Google Scholar 

  23. MF Manolson H Yu W Chen Y Yao K Li RL Lees JN Heersche (2003) ArticleTitleThe a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (> or = 10 nuclei) and small (< or = nuclei) osteoclasts J Biol Chem 278 49271–49278 Occurrence Handle14504271 Occurrence Handle10.1074/jbc.M309914200 Occurrence Handle1:CAS:528:DC%2BD3sXptlGrsb0%3D

    Article  PubMed  CAS  Google Scholar 

  24. U Kornak A Schulz W Friedrich S Uhlhaas B Kremens T Voit C Hasan U Bode TJ Jentsch C Kubisch (2000) ArticleTitleMutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis Hum Mol Genet 9 2059–2063 Occurrence Handle10942435 Occurrence Handle10.1093/hmg/9.13.2059 Occurrence Handle1:CAS:528:DC%2BD3cXmtVems7s%3D

    Article  PubMed  CAS  Google Scholar 

  25. U Kornak D Kasper MR Bosl E Kaiser M Schweizer A Schulz W Friedrich G Delling TJ Jentsch (2001) ArticleTitleLoss of the ClC-7 chloride channel leads to osteopetrosis in mice and man Cell 104 205–215 Occurrence Handle11207362 Occurrence Handle10.1016/S0092-8674(01)00206-9 Occurrence Handle1:CAS:528:DC%2BD3MXis1Kmu7s%3D

    Article  PubMed  CAS  Google Scholar 

  26. HK Vaananen H Zhao M Mulari JM Halleen (2000) ArticleTitleThe cell biology of osteoclast function J Cell Sci 113 IssueIDpt 3 377–381 Occurrence Handle10639325 Occurrence Handle1:CAS:528:DC%2BD3cXhsFCqsLw%3D

    PubMed  CAS  Google Scholar 

  27. M Gowen F Lazner R Dodds R Kapadia J Feild M Tavaria I Bertoncello F Drake S Zavarselk I Tellis P Hertzog C Debouck I Kola (1999) ArticleTitleCathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization J Bone Miner Res 14 1654–1663 Occurrence Handle10491212 Occurrence Handle10.1359/jbmr.1999.14.10.1654 Occurrence Handle1:CAS:528:DyaK1MXmsFOis7c%3D

    Article  PubMed  CAS  Google Scholar 

  28. A Littlewood-Evans T Kokubo O Ishibashi T Inaoka B Wlodarski JA Gallagher G Bilbe (1997) ArticleTitleLocalization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry Bone (NY) 20 81–86 Occurrence Handle1:CAS:528:DyaK2sXhtlSntbc%3D

    CAS  Google Scholar 

  29. Y Nishi L Atley DE Eyre JG Edelson A Superti-Furga T Yasuda RJ Desnick BD Gelb (1999) ArticleTitleDetermination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation J Bone Miner Res 14 1902–1908 Occurrence Handle10571690 Occurrence Handle10.1359/jbmr.1999.14.11.1902 Occurrence Handle1:CAS:528:DyaK1MXnsFektrc%3D

    Article  PubMed  CAS  Google Scholar 

  30. P Saftig E Hunziker O Wehmeyer S Jones A Boyde W Rommerskirch JD Moritz P Schu K von Figura (1998) ArticleTitleImpaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice Proc Natl Acad Sci U S A 95 13453–13458 Occurrence Handle9811821 Occurrence Handle10.1073/pnas.95.23.13453 Occurrence Handle1:CAS:528:DyaK1cXnsVGhtL4%3D

    Article  PubMed  CAS  Google Scholar 

  31. GB Stroup MW Lark DF Veber A Bhattacharyya S Blake LC Dare KF Erhard SJ Hoffman IE James RW Marquis Y Ru JA Vasko-Moser BR Smith T Tomaszek M Gowen (2001) ArticleTitlePotent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate J Bone Miner Res 16 1739–1746 Occurrence Handle11585335 Occurrence Handle10.1359/jbmr.2001.16.10.1739 Occurrence Handle1:CAS:528:DC%2BD3MXnsVKqtrc%3D

    Article  PubMed  CAS  Google Scholar 

  32. V Everts DC Aronson W Beertsen (1985) ArticleTitlePhagocytosis of bone collagen by osteoclasts in two cases of pycnodysostosis Calcif Tissue Int 37 25–31 Occurrence Handle3922593 Occurrence Handle1:STN:280:DyaL2M3gtFWrsg%3D%3D

    PubMed  CAS  Google Scholar 

  33. G Motyckova DE Fisher (2002) ArticleTitlePycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease Curr Mol Med 2 407–421 Occurrence Handle12125807 Occurrence Handle10.2174/1566524023362401 Occurrence Handle1:CAS:528:DC%2BD38XltlCqtL4%3D

    Article  PubMed  CAS  Google Scholar 

  34. P Garnero O Borel I Byrjalsen M Ferreras FH Drake MS McQueney NT Foged PD Delmas JM Delaisse (1998) ArticleTitleThe collagenolytic activity of cathepsin K is unique among mammalian proteinases J Biol Chem 273 32347–32352 Occurrence Handle9822715 Occurrence Handle10.1074/jbc.273.48.32347 Occurrence Handle1:CAS:528:DyaK1cXnvVelu7c%3D

    Article  PubMed  CAS  Google Scholar 

  35. WJ Boyle WS Simonet DL Lacey (2003) ArticleTitleOsteoclast differentiation and activation Nature (Lond) 423 337–342 Occurrence Handle10.1038/nature01658 Occurrence Handle1:CAS:528:DC%2BD3sXjs1ynu7g%3D

    Article  CAS  Google Scholar 

  36. SC Manolagas (2000) ArticleTitleBirth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis Endocr Rev 21 115–137 Occurrence Handle10782361 Occurrence Handle10.1210/er.21.2.115 Occurrence Handle1:STN:280:DC%2BD3c3ksVaiug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  37. GC Nicholson JM Moseley PM Sexton FA Mendelsohn TJ Martin (1986) ArticleTitleAbundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization J Clin Invest 78 355–360 Occurrence Handle3016026 Occurrence Handle1:CAS:528:DyaL28XltV2isLc%3D Occurrence Handle10.1172/JCI112584

    Article  PubMed  CAS  Google Scholar 

  38. M Horton (1990) ArticleTitleVitronectin receptor: tissue specific expression or adaptation to culture? Int J Exp Pathol 71 741–759 Occurrence Handle1:STN:280:DyaK3M%2Fgt1Cjuw%3D%3D

    CAS  Google Scholar 

  39. J Davies J Warwick N Totty R Philp M Helfrich M Horton (1989) ArticleTitleThe osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor J Cell Biol 109 1817–1826 Occurrence Handle2477382 Occurrence Handle10.1083/jcb.109.4.1817 Occurrence Handle1:CAS:528:DyaL1MXlvV2rtLo%3D

    Article  PubMed  CAS  Google Scholar 

  40. Y Okada K Naka K Kawamura T Matsumoto I Nakanishi N Fujimoto H Sato M Seiki (1995) ArticleTitleLocalization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption Lab Invest 72 311–322 Occurrence Handle7898050 Occurrence Handle1:CAS:528:DyaK2MXls1Clurw%3D

    PubMed  CAS  Google Scholar 

  41. HM Massey AM Flanagan (1999) ArticleTitleHuman osteoclasts derive from CD14-positive monocytes Br J Haematol 106 167–170 Occurrence Handle10444181 Occurrence Handle10.1046/j.1365-2141.1999.01491.x Occurrence Handle1:STN:280:DyaK1MzntlGltw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  42. GC Nicholson M Malakellis FM Collier PU Cameron WR Holloway TJ Gough C Gregorio-King MA Kirkland DE Myers (2000) ArticleTitleInduction of osteoclasts from CD14-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappaB ligand (RANKL) Clin Sci (Lond) 99 133–140 Occurrence Handle1:CAS:528:DC%2BD3cXmsV2murc%3D Occurrence Handle10.1042/CS19990355

    Article  CAS  Google Scholar 

  43. C Li W Wong (2003) DNA-chip analyser (dChip) G Parmigiani ES Garret R Irizarry SL Zeger (Eds) The Analysis of Gene Expression Data: Methods and Software Springer New York 120–141 Occurrence Handle10.1007/0-387-21679-0_5

    Chapter  Google Scholar 

  44. MT Engsig QJ Chen TH Vu AC Pedersen B Therkidsen LR Lund K Henriksen T Lenhard NT Foged Z Werb JM Delaisse (2000) ArticleTitleMatrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones J Cell Biol 151 879–889 Occurrence Handle11076971 Occurrence Handle10.1083/jcb.151.4.879 Occurrence Handle1:CAS:528:DC%2BD3cXotFensL4%3D

    Article  PubMed  CAS  Google Scholar 

  45. K Henriksen J Gram S Schaller BH Dahl MH Dziegiel J Bollerslev MA Karsdal (2004) ArticleTitleCharacterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II Am J Pathol 164 1537–1545 Occurrence Handle15111300 Occurrence Handle1:CAS:528:DC%2BD2cXns1Gqtbg%3D

    PubMed  CAS  Google Scholar 

  46. S Schaller K Henriksen C Sveigaard A Heegaard N Hélix M Stahlhut MC Ovejero JV Johansen H Solberg TL Andersen D Hougaard CB Shiøt BH Sørensen J Lichtenberg P Christophersen NT Foged J Delaissé MT Engsig MA Karsdal (2004) ArticleTitleThe chloride channel inhibitor NS3736 prevents bone resorption in ovariectomized rats without changing bone formation J Bone Miner Res 19 1144–1153 Occurrence Handle15176998 Occurrence Handle10.1359/JBMR.040302 Occurrence Handle1:CAS:528:DC%2BD2cXlvFWrt74%3D

    Article  PubMed  CAS  Google Scholar 

  47. K Henriksen M Karsdal JM Delaisse MT Engsig (2003) ArticleTitleRANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism J Biol Chem 278 48745–48753 Occurrence Handle14506249 Occurrence Handle10.1074/jbc.M309193200 Occurrence Handle1:CAS:528:DC%2BD3sXptlGktb4%3D

    Article  PubMed  CAS  Google Scholar 

  48. MA Karsdal P Hjorth K Henriksen T Kirkegaard KL Nielsen H Lou JM Delaisse NT Foged (2003) ArticleTitleTransforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression J Biol Chem 278 44975–44987 Occurrence Handle12933809 Occurrence Handle10.1074/jbc.M303905200 Occurrence Handle1:CAS:528:DC%2BD3sXoslWlt74%3D

    Article  PubMed  CAS  Google Scholar 

  49. JM Quinn S Neale Y Fujikawa JO McGee NA Athanasou (1998) ArticleTitleHuman osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells Calcif Tissue Int 62 527–531 Occurrence Handle9576981 Occurrence Handle10.1007/s002239900473 Occurrence Handle1:CAS:528:DyaK1cXjtlKqsL8%3D

    Article  PubMed  CAS  Google Scholar 

  50. V Shalhoub G Elliott L Chiu R Manoukian M Kelley N Hawkins E Davy G Shimamoto J Beck SA Kaufman G Van S Scully M Qi M Grisanti C Dunstan WJ Boyle DL Lacey (2000) ArticleTitleCharacterization of osteoclast precursors in human blood Br J Haematol 111 501–512 Occurrence Handle11122091 Occurrence Handle10.1046/j.1365-2141.2000.02379.x Occurrence Handle1:STN:280:DC%2BD3M7hs1KjsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  51. HC Blair SL Teitelbaum R Ghiselli S Gluck (1989) ArticleTitleOsteoclastic bone resorption by a polarized vacuolar proton pump Science 245 855–857 Occurrence Handle2528207 Occurrence Handle10.1126/science.2528207 Occurrence Handle1:CAS:528:DyaL1MXlslWlurY%3D

    Article  PubMed  CAS  Google Scholar 

  52. IA Silver RJ Murrills DJ Etherington (1988) ArticleTitleMicroelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts Exp Cell Res 175 266–276 Occurrence Handle3360056 Occurrence Handle10.1016/0014-4827(88)90191-7 Occurrence Handle1:CAS:528:DyaL1cXitF2ru7o%3D

    Article  PubMed  CAS  Google Scholar 

  53. T Yoshimori A Yamamoto Y Moriyama M Futai Y Tashiro (1991) ArticleTitleBafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells J Biol Chem 266 17707–17712 Occurrence Handle1832676 Occurrence Handle1:CAS:528:DyaK3MXltFWhs78%3D

    PubMed  CAS  Google Scholar 

  54. MA Karsdal K Henriksen MG Sorensen J Gram S Schaller MH Dziegiel AM Heegaard P Christophersen TJ Martin C Christiansen J Bollerslev (2005) ArticleTitleAcidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption Am J Pathol 166 467–476 Occurrence Handle15681830 Occurrence Handle1:CAS:528:DC%2BD2MXitVGnu7Y%3D

    PubMed  CAS  Google Scholar 

  55. EJ Bowman A Siebers K Altendorf (1988) ArticleTitleBafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells Proc Natl Acad Sci U S A 85 7972–7976 Occurrence Handle2973058 Occurrence Handle10.1073/pnas.85.21.7972 Occurrence Handle1:CAS:528:DyaL1MXjsF2rsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  56. JP Falgueyret RM Oballa O Okamoto G Wesolowski Y Aubin RM Rydzewski P Prasit D Riendeau SB Rodan MD Percival (2001) ArticleTitleNovel, nonpeptidic cyanamides as potent and reversible inhibitors of human cathepsins K and L J Med Chem 44 94–104 Occurrence Handle11141092 Occurrence Handle10.1021/jm0003440 Occurrence Handle1:CAS:528:DC%2BD3cXos1ajs7g%3D

    Article  PubMed  CAS  Google Scholar 

  57. TJ Hall W Higgins C Tardif TJ Chambers (1991) ArticleTitleA comparison of the effects of inhibitors of carbonic anhydrase on osteoclastic bone resorption and purified carbonic anhydrase isozyme II Calcif Tissue Int 49 328–332 Occurrence Handle1782573 Occurrence Handle1:CAS:528:DyaK38XotFWjsg%3D%3D

    PubMed  CAS  Google Scholar 

  58. M Kellinsalmi H Monkkonen J Monkkonen HV Leskela V Parikka M Hamalainen P Lehenkari (2005) ArticleTitleIn vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts Basic Clin Pharmacol Toxicol 97 382–391 Occurrence Handle16364054 Occurrence Handle10.1111/j.1742-7843.2005.pto_176.x Occurrence Handle1:CAS:528:DC%2BD28XivFSqsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  59. P Garnero M Ferreras MA Karsdal R Nicamhlaoibh J Risteli O Borel P Qvist PD Delmas NT Foged JM Delaisse (2003) ArticleTitleThe type I collagen fragments ICTP and CTX-I reveal distinct enzymatic pathways of bone collagen degradation J Bone Miner Res 18 859–867 Occurrence Handle12733725 Occurrence Handle10.1359/jbmr.2003.18.5.859 Occurrence Handle1:CAS:528:DC%2BD3sXjslahsrY%3D

    Article  PubMed  CAS  Google Scholar 

  60. K Henriksen MG Sorensen RH Nielsen J Gram S Schaller MH Dziegiel V Everts J Bollerslev MA Karsdal (2006) ArticleTitleDegradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification J Bone Miner Res 21 58–66 Occurrence Handle16355274 Occurrence Handle10.1359/JBMR.050905 Occurrence Handle1:CAS:528:DC%2BD28Xpt1Snug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  61. N Udagawa N Takahashi T Akatsu H Tanaka T Sasaki T Nishihara T Koga TJ Martin T Suda (1990) ArticleTitleOrigin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells Proc Natl Acad Sci U S A 87 7260–7264 Occurrence Handle2169622 Occurrence Handle10.1073/pnas.87.18.7260 Occurrence Handle1:STN:280:DyaK3czosV2rtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  62. S Kotake N Udagawa M Hakoda M Mogi K Yano E Tsuda K Takahashi T Furuya S Ishiyama KJ Kim S Saito T Nishikawa N Takahashi A Togari T Tomatsu T Suda N Kamatani (2001) ArticleTitleActivated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients Arthritis Rheum 44 1003–1012 Occurrence Handle11352231 Occurrence Handle10.1002/1529-0131(200105)44:5<1003::AID-ANR179>3.0.CO;2-# Occurrence Handle1:STN:280:DC%2BD3M3lsVWmsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  63. MN Weitzmann S Cenci L Rifas J Haug J Dipersio R Pacifici (2001) ArticleTitleT cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms J Bone Miner Res 16 328–337 Occurrence Handle11204433 Occurrence Handle10.1359/jbmr.2001.16.2.328 Occurrence Handle1:CAS:528:DC%2BD3MXptlOqtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  64. NJ Horwood V Kartsogiannis JM Quinn E Romas TJ Martin MT Gillespie (1999) ArticleTitleActivated T lymphocytes support osteoclast formation in vitro Biochem Biophys Res Commun 265 144–150 Occurrence Handle10548505 Occurrence Handle10.1006/bbrc.1999.1623 Occurrence Handle1:CAS:528:DyaK1MXntVCnu7c%3D

    Article  PubMed  CAS  Google Scholar 

  65. SL Teitelbaum FP Ross (2003) ArticleTitleGenetic regulation of osteoclast development and function Nat Rev Genet 4 638–649 Occurrence Handle12897775 Occurrence Handle10.1038/nrg1122 Occurrence Handle1:CAS:528:DC%2BD3sXlvFaqtrY%3D

    Article  PubMed  CAS  Google Scholar 

  66. JE Meredith SuffixJr S Winitz JM Lewis S Hess XD Ren MW Renshaw MA Schwartz (1996) ArticleTitleThe regulation of growth and intracellular signaling by integrins Endocr Rev 17 207–220 Occurrence Handle8771356 Occurrence Handle10.1210/er.17.3.207 Occurrence Handle1:CAS:528:DyaK28Xktlalsbg%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Asser Karsdal.

About this article

Cite this article

Sørensen, M., Henriksen, K., Schaller, S. et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25, 36–45 (2007). https://doi.org/10.1007/s00774-006-0725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-006-0725-9

Key words

Navigation