Skip to main content
Log in

An investigation to identify the thrust in flapping and undulatory motion of smart Timoshenko beam

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a computational approach to investigate the feasibility of using Smart Timoshenko beam (STB) for underwater locomotion is presented. The main objective of the current study is to understand different thrust producing mechanisms, namely flapping and undulatory modes of locomotion and to identify the critical parameters, such as body length, flexural stiffness and tail beat frequency affecting the locomotion. The thrust for different modes of locomotion with a variation in Young’s modulus and moment of inertia for the STB has been calculated. The results will help improve the understanding of thrust generation in both flapping and undulatory modes which are essential in the design and development of the bio-inspired robotic systems for underwater locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cheng J-Y, Pedley TJ, Altringham JD (1998) A continuous dynamic beam model for swimming fish. Philos Trans R Soc B Biol Sci 353(1371):981–997

    Google Scholar 

  2. Govindarajan G, Sharma R, Palaniswamy A (2018) Development of a numerical approach for the prediction of thrust generated by a biomimetic propulsion system. Ships Offshore Struct 14(8):804–817. https://doi.org/10.1080/17445302.2018.1564539

    Article  Google Scholar 

  3. Lejun C, Alper E (2013) Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir Biomim 8(1):1–13

    Google Scholar 

  4. Lindsey CC (1978) Form, function and locomotory habits in fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Locomotion. Academic, New York, pp 1–100

    Google Scholar 

  5. Ghani O, Andrejs C, Jean-Claude B, Jean- Marc DM, Py Charlotte (2012) Twisting and buckling: a new undulation mechanism for artificial swimmers. Eur Phys J E 35:121. https://doi.org/10.1140/epje/i2012-12121-y

    Article  Google Scholar 

  6. Francois N, On Shun P, LaiLai Z, Luca B, Eric L (2014) Rotational propulsion enabled by inertia. Eur Phys J E 37:60. https://doi.org/10.1140/epje/i2014-14060-y

    Article  Google Scholar 

  7. Moon KK, Dong-H Y (2015) Dynamic modelling and active vibration control of a submerged rectangular plate equipped with piezoelectric sensors and actuators. J Fluids Struct 54:848–867

    Google Scholar 

  8. Goushcha O, Huseyin DA, Niell E, Yiannis A (2015) Energy harvesting prospects in turbulent boundary layers by using piezoelectric transduction. J Fluid Struct 54:823–847

    Google Scholar 

  9. Zakharova AP, Alexander ML, Pismen LM (2016) Flexible helical yarn swimmers. Eur Phys J E 39:87. https://doi.org/10.1140/epje/i2016-16087-4

    Article  Google Scholar 

  10. Coral W, Rossi C, Curet OM (2015) Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses. Eur Phys J Spec Top 224(17):3379–3392

    Google Scholar 

  11. Van Rensburg NFJ, van der Merwe AJ (2006) Natural frequencies and modes of a Timoshenko beam. Wave Motion 44(1):58–69

    MathSciNet  MATH  Google Scholar 

  12. Nesterenko VV (1993) A theory for transverse vibrations of a Timoshenko beam. PMM J Appl Math Mech 57(4):669–677

    MathSciNet  MATH  Google Scholar 

  13. Daga A, Ganesan N, Shankar K (2009) Transient dynamic response of cantilever magneto–electro-elastic beam using finite elements. Int J Comput Methods Eng Sci Mech 10(3):173–185

    MATH  Google Scholar 

  14. Alvarado P V y (2007) Design of biomimetic compliant devices for locomotion in liquid environments, Ph.D. Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology, Boston, MA, USA

  15. Erturk A, Bilgen O, Fontenille M, Inman D J (2008) Piezoelectric energy harvesting from macro-fiber composites with an application to morphing-wing aircrafts. In: 19th International Conference of Adaptive Structures and Technologies 19(11):1311–1325

  16. Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325

    Google Scholar 

  17. Bilgen O, Erturk A, Inman DJ (2010) Analytical and experimental characterization of macro-fiber composite actuated thin clamped-free unimorph benders. J Vib Acoust 132(5):51005

    Google Scholar 

  18. Huang C, Lin YY, Tang TA (2004) Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state. J Micromech Microeng 14(4):530–534

    Google Scholar 

  19. Lighthill MJ (1960) Note on the swimming of slender fish. J Fluid Mech 9(2):305–317

    MathSciNet  Google Scholar 

  20. Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Annu Rev Fluid Mech 1:413–446

    Google Scholar 

  21. Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301

    MATH  Google Scholar 

  22. Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32(4):802–814

    Google Scholar 

  23. Nicole A, Sachit B, Maurizio P, Davide S (2015) Dynamics of animal systems. Eur Phys J Spec Top 224(17–18):3109–3117

    Google Scholar 

  24. Lauder GV, Du Tangorra JL, Li R, Youcef Z, Toumi K, Valdivia PAY (2015) Fish locomotion: biology and robotics of body and fin-based movements, robot fish—bio-inspired fishlike underwater robots. Springer, Beijing, China

    Google Scholar 

  25. Happel J, Brenner H (1981) Low Reynolds number hydrodynamics: with special applications to particulate media, series on mechanics of fluids and transport processes, vol 1. Springer, Berlin, p 553

    Google Scholar 

  26. Shahab S, Erturk A (2015) Unified electrohydroelastic investigation of underwater energy harvesting and dynamic actuation by incorporating Morison’s equation. In: Proceeding of SPIE active and passive smart structures and integrated systems 201594310C SPIE

  27. Erturk A (2012) Assumed-modes modeling of piezoelectric energy harvesters: euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput Struct 106–107:214–227

    Google Scholar 

  28. Zhang Y, Liu G (2009) Wireless swimming microrobot: design, analysis, and experiments. J Dyn Syst Meas Control 131(1):11004

    Google Scholar 

  29. Toshio F, Atsushi K, Fumihito A, Matsuura H (1994) Mechanism and swimming experiment of micro mobile robot in water. In: Proceedings of IEEE International Conference of robotics and automation 1:814–819

  30. Hills ZP (2010) Using macro-fiber composite actuators for aquatic locomotion. Virginia Polytechnic Institute and State University, Washington

    Google Scholar 

  31. Chowdhury AR, Xue W, Behera MR, Panda SK (2016) Hydrodynamics study of a BCF mode bioinspiredrobotic-fish underwater vehicle using Lighthill’s slender body model. J Mar Sci Technol 21(1):102–114. https://doi.org/10.1007/s00773-015-0335-0

    Article  Google Scholar 

Download references

Acknowledgements

Primarily, this research was supported by the internal research grants of IIT Madras, Chennai, India under research scheme: OE12D004. Finally, I thank my colleagues for helping me in the critical circumstance, Mr. Arvind, Dr. Marimuthu kannimuthu, Dr. Harinadh Gidituri

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Govindarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

By using the convention and free body diagram from [2]. The Timoshenko beam model is the two-second order coupled partial differential equations of displacement and bending slope indicated. The dynamic equilibrium translation and rotation equations respectively

$$ \frac{{\partial V_{*} }}{\partial x} + \rho A\frac{{\partial^{2} v}}{{\partial t^{2} }} + C_{\text{OD1}} \frac{\partial v}{\partial t} + \frac{1}{2}C_{\text{D}} \rho A\left| {\frac{\partial v}{\partial t}} \right| \times \left| {\frac{\partial v}{\partial t}} \right| = 0 $$
(55)
$$ \frac{\partial M}{\partial x} - \rho I\frac{{\partial^{3} v}}{{\partial x\partial t^{2} }} - C_{\text{OD2}} \frac{{\partial^{2} v}}{\partial x\partial t} - \frac{1}{2}C_{\text{D}} \rho A\frac{\partial }{\partial x}\left( {\frac{\partial v}{\partial t}} \right)^{2} - V_{*} = 0 $$
(56)
$$ \frac{\partial M}{\partial x} - \rho I\frac{{\partial^{3} v}}{{\partial x\partial t^{2} }} - C_{\text{OD2}} \frac{{\partial^{2} v}}{\partial x\partial t} - \frac{1}{2}C_{\text{D}} \rho A\frac{\partial }{\partial x}\left( {\frac{\partial v}{\partial x}} \right)^{2} + \kappa AG\left( {\frac{\partial v}{\partial x} - \psi } \right) $$
(57)

Where the internal moment force moment

$$ M = EI\frac{{\partial^{2} v}}{{\partial x^{2} }} + \vartheta v(t)\left[ {H(x) - H(x - L)} \right] $$
(58)

The bending slope due to pure bending can be defined as

$$ \psi = \frac{\partial v}{\partial x} $$
(59)
$$ M = EI\frac{\partial \psi }{{\partial x^{2} }} + \vartheta v(t)\left[ {H(x) - H(x - L)} \right] $$
(60)
$$ \begin{aligned} \frac{\partial }{\partial x}\left[ {EI\frac{\partial \psi }{\partial x}} \right] & - \rho I\frac{{\partial^{2} \psi }}{{\partial t^{2} }} - C_{\text{OD2}} \frac{\partial \psi }{\partial t} - \frac{1}{2}C_{\text{D}} \rho A\left| {\frac{\partial \psi }{\partial t}} \right| \times \left| {\frac{\partial \psi }{\partial t}} \right| \\ & + \kappa AG\left( {\frac{\partial v}{\partial x} - \psi } \right) + \vartheta v(t)\left[ {H(x) - H(x - L)} \right] \\ \end{aligned} $$
(61)
$$ \begin{aligned} EI\frac{{\partial^{2} \psi }}{{\partial x^{2} }} & - \rho I\frac{{\partial^{2} \psi }}{{\partial t^{2} }} - C_{\text{OD2}} \frac{\partial \psi }{\partial t} - \frac{1}{2}C_{\text{D}} \rho A\left| {\frac{\partial \psi }{\partial t}} \right| \times \left| {\frac{\partial \psi }{\partial t}} \right| \\ & + \kappa AG\left( {\frac{\partial v}{\partial x} - \psi } \right) + \vartheta v(t)\left[ {H(x) - H(x - L)} \right] = 0 \\ \end{aligned} $$
(62)
$$ \begin{aligned} \left[ {EI\frac{{\partial^{2} \psi }}{{\partial x^{2} }}} \right] & - \rho I\frac{{\partial^{2} \psi }}{{\partial t^{2} }} - C_{\text{OD2}} \frac{\partial \psi }{\partial t} - \frac{1}{2}C_{\text{D}} \rho A\left| {\frac{\partial \psi }{\partial t}} \right| \times \left| {\frac{\partial \psi }{\partial t}} \right| \\ & + \kappa AG\left( {\frac{\partial v}{\partial x} - \psi } \right) + \vartheta v(t)\left[ {H(x) - H(x - L)} \right] = 0 \\ \end{aligned} $$
(63)

Where the translation equation of the equilibrium becames

$$ \hat{m}\frac{{\partial^{2} v}}{{\partial t^{2} }} + \kappa AG\left[ {\frac{\partial \psi }{\partial x} - \frac{{\partial^{2} v}}{{\partial x^{2} }}} \right] + C_{\text{OD1}} \frac{\partial v}{\partial t} + \frac{1}{2}C{}_{\text{D}}\rho A\left| {\frac{\partial v}{\partial t}} \right| \times \left| {\frac{\partial v}{\partial t}} \right| = 0 $$
(64)

where

$$ \hat{m} = \left( {\rho_{s} t_{s} + \rho_{p} t_{p} } \right)b $$

\( \rho_{s} \) then of the substrate, \( t_{s} \) thickness of substrate, \( \rho_{p} \) density of piezeoelectric material, \( t_{p} \) thickness of piezeoelectric material.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, G. An investigation to identify the thrust in flapping and undulatory motion of smart Timoshenko beam. J Mar Sci Technol 25, 743–756 (2020). https://doi.org/10.1007/s00773-019-00677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-019-00677-6

Keywords

Navigation