Skip to main content
Log in

Molekulargenetische Diagnostik – zielgerichtete Therapie des malignen Melanoms

Molecular genetic diagnostics—targeted therapy for malignant melanoma

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Mit der Identifizierung der Schlüsselrolle des MAPK-Signalwegs (MAPK „mitogen-activated protein kinase“) für die Entstehung und Progression des malignen Melanoms gelang ein Durchbruch in dessen Behandlung. Die Entwicklung zielgerichteter Therapien und Immuntherapien führte zu einem breiten therapeutischen Spektrum in der Behandlung fortgeschrittener oder metastasierter Melanome.

Ziel

Dieser Artikel befasst sich mit der Wirksamkeit der aktuellen selektiven Kinaseinhibitoren bei der Behandlung des malignen Melanoms mit nachgewiesener BRAF-Mutation und auch den seltener vorkommenden Mutationen im NRAS- und cKIT-Gen. Die Ergebnisse neuester klinischer Studien einschließlich des Toxizitätsprofils sowie neue Therapieansätze werden beschrieben.

Material und Methoden

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed und ClinicalTrials zum Thema Behandlung des fortgeschrittenen Melanoms.

Ergebnisse

Eine Kombination von BRAF- und MEK-Inhibitoren führt zu einer Steigerung des Therapieansprechens und des Gesamtüberlebens im Vergleich zur Chemotherapie oder Monotherapie. Weitere spezifische Inhibitoren zeigen vielversprechende Resultate.

Diskussion

Durch die zielgerichtete Therapie und Checkpointblockade hat sich die Prognose des fortgeschrittenen und metastasierten Melanoms deutlich verbessert. Eine Kombination dieser therapeutischen Ansätze, könnte zukünftig in der Behandlung des Melanoms eine wichtige Rolle spielen. Sowohl eine detaillierte genetische Analyse des Tumors als auch ein besseres Verständnis der biologischen Prozesse sind notwendig, um insbesondere hinsichtlich der Resistenzmechanismen die Wirksamkeit moderner Melanomtherapien zu verbessern.

Abstract

Background

The identification of the MAPK signaling pathway as a key factor in the origin and progress of malignant melanoma led to a breakthrough in its treatment. The development of targeted therapies as well as immunotherapies added a broad therapeutic scope in the treatment of advanced or metastatic melanomas.

Aim

This article deals with the efficacy of current selective kinase inhibitors in the treatment of malignant melanoma with BRAF mutations and other rare mutations, such as NRAS and cKIT. Results of the latest clinical studies with their toxicity profiles and new therapeutic approaches are described.

Material and methods

This article is based on a selective literature search in the PubMed and Clinicaltrials database for the treatment of advanced melanoma.

Results

A combination of BRAF and MEK inhibitors leads to an improved response rate and increase in overall survival compared to chemotherapy or monotherapy. Other specific inhibitors show promising results as well.

Discussion

Targeted therapies and checkpoint inhibitors significantly improve the prognosis of advanced and metastatic melanoma. In the future a combination of these therapeutic approaches could play an important role in the treatment of melanoma. A detailed genetic analysis of the tumor as well as a profound understanding of biological processes are necessary to improve the efficacy of modern treatment of melanoma, particularly regarding resistance and molecular escape mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Menzies AM, Long GV (2014) Systemic treatment for BRAF-mutant melanoma: where do we go next? Lancet Oncol 15:e371–e381

    Article  PubMed  Google Scholar 

  2. Pearson G et al (2001) Mitogen-Activated Protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    PubMed  CAS  Google Scholar 

  3. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  4. Bauer J et al (2011) BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res 24:345–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pollock PM et al (2002) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    Article  PubMed  CAS  Google Scholar 

  6. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  7. Chapman PB et al (2017) Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: final overall survival results of the randomized BRIM-3 study. Ann Oncol 28:2581–2587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. McArthur GA et al (2014) Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fedorenko IV, Gibney GT, Sondak VK, Smalley KSM (2014) Beyond BRAF: where next for melanoma therapy? Br J Cancer 112:217–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Flaherty KT et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114

    Article  PubMed  CAS  Google Scholar 

  11. Larkin J et al (2014) Combined Vemurafenib and Cobimetinib in BRAF-mutated melanoma. N Engl J Med 371:1867–1876

    Article  PubMed  CAS  Google Scholar 

  12. Long GV et al (2015) Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386:444–451

    Article  PubMed  CAS  Google Scholar 

  13. Lewis K et al (2015) 3340 treatment beyond progression in advanced BRAF-mutated melanoma with vemurafenib and cobimetinib: results from the BRIM7 trial. Eur J Cancer 51:S679

    Article  Google Scholar 

  14. Banzi M et al (2016) Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. Onco Targets Ther 9:2725–2733

    PubMed  PubMed Central  Google Scholar 

  15. Arozarena I, Wellbrock C (2017) Overcoming resistance to BRAF inhibitors. Ann Transl Med 5:387–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mai R et al (2015) Therapeutic efficacy of combined BRAF and MEK inhibition in metastatic melanoma: a comprehensive network meta-analysis of randomized controlled trials. Oncotarget 6:28502–28512

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shain AH et al (2015) The genetic evolution of melanoma from precursor lesions. N Engl J Med 373:1926–1936

    Article  PubMed  CAS  Google Scholar 

  18. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  19. Carvajal RD (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goldinger SM, Murer C, Stieger P, Dummer R (2013) Targeted therapy in melanoma – the role of BRAF, RAS and KIT mutations. Eur J Cancer Suppl 11:92–96

    Article  Google Scholar 

  21. Lewis K et al (2017) LBA7_PRBRIM8: a randomized, double-blind, placebo-controlled study of adjuvant vemurafenib in patients (pts) with completely resected, BRAFV600+ melanoma at high risk for recurrence. Ann Oncol. https://doi.org/10.1093/annonc/mdx440.047

    Article  PubMed  Google Scholar 

  22. Long GV et al (2017) Adjuvant Dabrafenib plus Trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377:1813–1823

    Article  PubMed  CAS  Google Scholar 

  23. Charles J et al (2014) Mécanismes de résistance aux inhibiteurs de BRAF. Ann Dermatol Venereol 141:671–681

    Article  PubMed  CAS  Google Scholar 

  24. Jarmuda S et al (2012) Potential role of Demodex mites and bacteria in the induction of rosacea. J Med Microbiol 61:1504–1510

    Article  PubMed  Google Scholar 

  25. Whittaker SR et al (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:350–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Paraiso KHT et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–2760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Inamdar GS, Madhunapantula SV, Robertson GP (2010) Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 80:624–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Straussman R et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Amann VC et al (2017) Developments in targeted therapy in melanoma. Eur J Surg Oncol 43:581–593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Leiter.

Ethics declarations

Interessenkonflikt

K. Pietschke, D. Lomberg, T.K. Eigentler und U. Leiter geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietschke, K., Lomberg, D., Eigentler, T.K. et al. Molekulargenetische Diagnostik – zielgerichtete Therapie des malignen Melanoms. Onkologe 24, 472–477 (2018). https://doi.org/10.1007/s00761-018-0373-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-018-0373-4

Schlüsselwörter

Keywords

Navigation