Skip to main content
Log in

Nuklearmedizinische Diagnostik neuroendokriner Tumoren

Nuclear medicine diagnosis of neuroendocrine tumors

  • Leitthema: endokrine Tumoren
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die Somatostatinrezeptorszintigraphie (SMRS) dient dem spezifischen Nachweis neuroendokriner Tumoren (NET) sowie Rezeptor-positiver Metastasen mit hoher Sensitivität (80–>95%) und ermöglicht eine Ganzkörperdiagnostik in einem Untersuchungsgang. Auch kleine Primärtumoren und Metastasen, die mit CT, MRT und Sonographie nicht oder nur schwer nachweisbar sind, können bei hoher Rezeptorexpression szintigraphisch detektiert werden. Die SMRS sollte bei substanziellem Verdacht auf einen GEP-Tumor oder nach dem immunhistochemischen Nachweis eines NET als primäres diagnostisches Verfahren vor CT und MRT zum Staging eingesetzt werden. Weitere Indikationen sind Verlaufskontrolle nach Operation, Rezidivdiagnostik bei Tumormarkeranstieg, Beurteilung des Ansprechens auf eine Chemotherapie oder biologische Therapie sowie die Differenzialdiagnose NET vs. nicht endokriner Tumor bei Nachweis einer Raumforderung, sofern eine bioptische Klärung nicht möglich ist. Letzlich ist die SMRS für die Indikationsstellung zur Radiorezeptortherapie (Intensität der Rezeptorexpression) sowie zur Verlaufskontrolle von essenzieller Bedeutung.

Abstract

Somatostatin receptor scintigraphy (SMRS) specifically detects neuroendocrine tumors (NET) and receptor-positive metastases with high sensitivity (80 to >95%) and allows whole body diagnosis with one scintigraphic examination. Even small primary tumors and metastases, which are difficult to diagnose with CT, MRI, or sonography, can be detected if the receptor density is high. If there is strong suspicion of a GEP tumor, or if a NET has been proven by immunohistochemistry, SMRS should be the first diagnostic procedure for staging (before CT and MRI). Further indications are follow-up after operation and diagnosis of recurrences in cases of increasing specific tumor markers, evaluation of the therapeutic response after chemotherapy or biotherapy, and differential diagnosis of neuroendocrine tumor vs nonendocrine tumor in cases of a space-occupying mass if a final diagnosis cannot be obtained by biopsy or operation. Finally, there is an essential role for somatostatin receptor scintigraphy in the pretherapeutic evaluation (receptor density) before peptide receptor radiotherapy and in the follow-up after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Adams S, Baum RP, Adams M et al. (1997) Zur klinischen Wertigkeit der Somatostatinrezeptorszintigraphie. Med Klin 92:138–143

    CAS  PubMed  Google Scholar 

  2. Adams S, Baum RP, Hertel A (1998) Intraoperative Gamma Probe Detection of Neuroendocrine Tumors. J Nucl Med 39:1155–1160

    CAS  PubMed  Google Scholar 

  3. Bangard M, Behe M, Guhlke S et al. (2000) Detection of somatostatin receptor-positive tumours using the new99mTc-tricine-HYNIC-D-Phel-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med 27:628–637

    Article  CAS  PubMed  Google Scholar 

  4. Blum JE, Handmaker H, Lister-James J et al. (2000) A multicenter trial with a somatostatin analog99mTc depreotide in the evaluation of solitary pulmonary nodules. Chest 117:1232–1238

    CAS  PubMed  Google Scholar 

  5. Bombardieri E, Aktolun C, Baum RP et al. (2003)111In-pentetreotide scintigraphy: procedure guidelines for tumor imaging. Eur J Nucl Med Mol Imaging 30:BP140-BP147

    PubMed  Google Scholar 

  6. Decristoforo C, Mather SJ, Cholewinski W et al. (2000)99mTc-tricine-HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumors; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325

    CAS  PubMed  Google Scholar 

  7. Decristoforo C, Melendet-Alafort L, Sosabowski JK et al. (2000)99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1113–1119

    Google Scholar 

  8. Dörr U, Räth U, Sautter-Bihl ML et al. (1993) Improved visualization of carcinoid liver metastases by indium-111 pentetreotide scintigraphy following treatment with cold somatostatin analogue. Eur J Nucl Med 20:431–433

    PubMed  Google Scholar 

  9. Ehrlich P (1900). Croonian Lecture—on Immunity. Proc R Soc London 66:424

    Google Scholar 

  10. Eriksson B, Bergstrom M, Sundin A, Juhlin C, Orlefors H, Oberg K, Langstrom B (2002) The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann N Y Acad Sci 970:159–169

    CAS  PubMed  Google Scholar 

  11. Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, Moser E, Nitzsche E. Whole-body F-18 DOPA PET for detection of gastrointestinal carcinoid tumors (2001). Radiology 220:373–380

    CAS  PubMed  Google Scholar 

  12. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68 DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    CAS  PubMed  Google Scholar 

  13. Ivancevic V, Nauck C, Sandrock D et al. (1992) Somatostatin receptor scintigraphy with111In-pentatreotide in gastroenteropancreatic endocrine tumors (GEP). Eur J Nucl Med 19:736

    Google Scholar 

  14. Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, de Camps J, Schran H, Chen T, Smith MC, Bouterfa H, Valkema R, Krenning EP, Kvols LK, Pauwels S (2003) Y-86 DOTA-D-Phe1-Tyr3-octreotide (SMT487)-a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 30:510–518

    CAS  PubMed  Google Scholar 

  15. Joseph K, Stapp J, Reinecke J et al. (1992) Rezeptorszintigraphie bei endokrinen gastroenteropankreatischen Tumoren. Dtsch Med Wochenschr 117:1025–1028

    CAS  PubMed  Google Scholar 

  16. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U (2003). Evaluation of positron emission tomography imaging using Ga-68 DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to In-111-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    Article  PubMed  Google Scholar 

  17. Krenning EP, Bakker WH, Breeman WAP et al. (1989) Localisation of endocrine related tumors with radioiodinated analogue of somatostatin. Lancet I: 242–245

    Article  Google Scholar 

  18. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WAP, Kooji PPM, Oei HY, van Hagen M, Postema PTE, de Jong M, Reubi JC, Visser TJ, Reijs AEM, Hofland LJ, Koper JW, Lamberts SWJ (1993). Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731

    CAS  PubMed  Google Scholar 

  19. Krenning EP, Kwekkeboom DJ, Oei HY et al. (1994) Somatostatin-receptor scintigraphy in gastroenteropancreatic tumors. An overview of European results. Ann N Y Acad Sci 733:416–424

    CAS  PubMed  Google Scholar 

  20. Kwekkeboom DJ, Krenning EP (1996) Somatostatin receptor scintigraphy in patients with carcinoid tumors. World J Surg 20:157–161

    Article  CAS  Google Scholar 

  21. Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging (2002) Semin Nucl Med 32:84–91

    Google Scholar 

  22. Lamberts SWJ, Bakker WH, Reubi JC et al. (1990) Somatostatin receptor imaging in the localization of endocrine tumors. N Engl J Med 323:1246–1249

    CAS  PubMed  Google Scholar 

  23. Maecke HR, Behe M (1996). New octreotide derivatives labelled with technetium-99m [abstract]. J Nucl Med 37:1144

    Google Scholar 

  24. Meijer WG, van der Veer E, Jager PL, van der Jagt EJ, Piers BA, Kema IP, de Vries EG, Willemse PH (2003) Bone metastases in carcinoid tumors: clinical features, imaging characteristics, and markers of bone metabolism. J Nucl Med 44:184–191

    PubMed  Google Scholar 

  25. Patel YC, Amherdt M, Orci L (1982) Quantitative electron microscopic autoradiography of insulin, glucagon and somatostatin binding sites on islets. Science 217:1155–1156

    CAS  PubMed  Google Scholar 

  26. Reubi JC, Maurer R (1985) Autoradiographic mapping of somatostatin receptors in the rat CNS and pituitary. Neuroscience 15:1183–1193

    Article  CAS  PubMed  Google Scholar 

  27. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Maecke H (2000) Affinity profiles for human somatostatin receptor subtypes SST1.SST5 of somatostatin tracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    CAS  PubMed  Google Scholar 

  28. Signore A, Annovazzi A, Chianelli M et al. (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565

    Article  CAS  PubMed  Google Scholar 

  29. Taal BG, Hoefnagel CA, Valdes Olmos RA, Boot H (1996) Combined diagnostic imaging with I-131 metaiodobenzylguanidine and In-111 pentetreotide in carcinoid tumours. Eur J Cancer 32A:1924–1932

    Article  CAS  PubMed  Google Scholar 

  30. Zuetenhorst JM, Hoefnagel CA, Boot H, Valdes Olmos RA, Taal BG (2002) Evaluation of In-111 pentetreotide, I-131 MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun 23:735–741

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, R.P., Hofmann, M. Nuklearmedizinische Diagnostik neuroendokriner Tumoren. Onkologe 10, 598–610 (2004). https://doi.org/10.1007/s00761-004-0716-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-004-0716-1

Schlüsselwörter

Keywords

Navigation