Skip to main content

Advertisement

Log in

Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The epithelial-to-mesenchymal transition (EMT) plays a vital role in carcinogenesis, invasion, and metastasis of many epithelial tumors including oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck. However, the functional role of the actin-sequestering protein thymosin β4 (Tβ4) in the EMT in OSCCs remains unclear. Thus, we investigated whether overexpression of Tβ4 could induce in vitro tumorigenesis such as cell proliferation and anchorage independency and an EMT-like phenotype in OSCCs. Also, we examined whether it affects invasiveness and cell motility-associated signaling molecules. Tβ4-overexpressing OSCCs, SCC-15_Tβ4 and SCC-25_Tβ4, enhanced cell proliferation and colony formation. In addition, we observed that Tβ4 overexpression induced an EMT-like phenotype, accompanied by a decrease in expression of the epithelial cell marker E-cadherin and an increase in expression of mesenchymal cell markers vimentin and N-cadherin. Also, the expression level of Twist1, an EMT-inducing transcription factor, was significantly enhanced in SCC-15_Tβ4 and SCC-25_Tβ4 cells. Tβ4 overexpression augmented in vitro invasion and MMP-2 activity and enhanced the phosphorylation of paxillin and cortactin and expression of LIMK1. Taken together, these results suggest that Tβ4 overexpression could be one of the causes of tumorigenesis and progression in OSCCs. Further investigation on the Tβ4 molecule would encourage the development of specific targets for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badowski C, Pawlak G, Grichine A, Chabadel A, Oddou C, Jurdic P, Pfaff M, Albigès-Rizo C, Block MR et al (2008) Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Mol Biol Cell 19(2):633–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  • Bednarek R, Boncela J, Smolarczyk K, Cierniewska-Cieslak A, Wyroba E, Cierniewski CS et al (2008) Ku80 as a novel receptor for thymosin beta4 that mediates its intracellular activity different from G-actin sequestering. J Biol Chem 283(3):1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Binnie WH, Rankin KV, Mackenzie IC et al (1983) Etiology of oral squamous cell carcinoma. J Oral Pathol 12(1):11–29

    Article  PubMed  CAS  Google Scholar 

  • Bodner L, Manor E, Friger MD, van der Waal I et al (2014) Oral squamous cell carcinoma in patients 20 years of age or younger—review and analysis of 186 reported cases. Oral Oncol 50(2):84–89

    Article  PubMed  Google Scholar 

  • Bowden ET, Onikoyi E, Slack R, Myoui A, Yoneda T, Yamada KM, Mueller SC et al (2006) Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res 312(8):1240–1253

    Article  PubMed  CAS  Google Scholar 

  • Brieger A, Plotz G, Zeuzem S, Trojan J et al (2007) Thymosin beta 4 expression and nuclear transport are regulated by hMLH1. Biochem Biophys Res Commun 364(4):731–736

    Article  PubMed  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Didry D, Erk I, Lepault J, Van Troys ML, Vandekerckhove J, Perelroizen I, Yin H, Doi Y, Pantaloni D et al (1996) Tβ4 is not a simple G-actin sequestering protein and interacts with F-actin at high concentration. J Biol Chem 271(16):9231–9239

    Article  PubMed  CAS  Google Scholar 

  • Chao TC, Chen KJ, Tang MC, Chan LC, Chen PM, Tzeng CH, Su Y et al (2014) Thymosin beta-4 knockdown in IEC-6 normal intestinal epithelial cells induces DNA re-replication via downregulating Emi1. J Cell Physiol 229(11):1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Singer RH, Segall JE et al (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695–718

    Article  PubMed  CAS  Google Scholar 

  • Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382(Pt 1):13–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dantas DD, Ramos CC, Costa AL, Souza LB, Pinto LP et al (2003) Clinical–pathological parameters in squamous cell carcinoma of the tongue. Braz Dent J 14(1):22–25

    Article  PubMed  Google Scholar 

  • Deakin NO, Pignatelli J, Turner CE et al (2012) Diverse roles for the paxillin family of proteins in cancer. Genes Cancer 3(5–6):362–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Efstathiou JA, Liu D, Wheeler JM, Kim HC, Beck NE, Ilyas M et al (1999) Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc Natl Acad Sci USA 96:2316–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foletta VC, Moussi N, Sarmiere PD, Bamburg JR, Bernard O et al (2004) LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues. Exp Cell Res 294(2):392–405

    Article  PubMed  CAS  Google Scholar 

  • Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD et al (1995) Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694

    PubMed  CAS  Google Scholar 

  • Grant DS, Rose W, Yaen C, Goldstein A, Martinez J et al (1999) Thymosin beta 4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 2:125–135

    Article  Google Scholar 

  • Haas BR, Cuddapah VA, Watkins S, Rohn KJ, Dy TE, Sontheimer H et al (2011) With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Am J Physiol Cell Physiol 301(5):C1150–C1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall AK (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48(5):672–677

    Article  PubMed  CAS  Google Scholar 

  • Huang HC, Hu CH, Tang MC, Wang WS, Chen PM, Su Y et al (2007a) Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Cha SK, Wang HR, Xie J, Cobb MH et al (2007b) WNKs: protein kinases with a unique kinase domain. Exp Mol Med 39(5):565–573

    Article  PubMed  CAS  Google Scholar 

  • Iguchi K, Ito M, Usui S, Mizokami A, Namiki M, Hirano K et al (2008) Downregulation of thymosin β4 expression by androgen in prostate cancer LNCaP cells. J Androl 29(2):207–212

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim A, Son M, Kim KI, Yang Y, Song EY, Lee HG, Lim JS et al (2009) Elevation of intracellular cyclic AMP inhibits NF-kappaB-mediated thymosin beta4 expression in melanoma cells. Exp Cell Res 315(19):3325–3335

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, So IS, Park SY, Kim IS et al (2008) Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett 582(15):2161–2166

    Article  PubMed  CAS  Google Scholar 

  • Lee SI, Kim DS, Lee HJ, Cha HJ, Kim EC et al (2013) The role of thymosin beta 4 on odontogenic differentiation in human dental pulp cells. PLoS One 8(4):e61960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zheng L, Peng F, Qi C, Zhang X, Zhou A, Liu Z, Wu S et al (2007) Recombinant thymosin beta 4 can promote full-thickness cutaneous wound healing. Protein Expr Purif 56(2):229–236

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • McConnell BV, Koto K, Gutierrez-Hartmann A et al (2011) Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Mol Cancer 18(10):75

    Article  CAS  Google Scholar 

  • Moniz S, Jordan P (2010) Emerging roles for WNK kinases in cancer. Cell Mol Life Sci 67(8):1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Sakamoto M, Yasuda J, Takamura M, Fujita N, Tsuruo T, Todo S, Hirohashi S et al (2002) Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res 62(10):2971–2975

    PubMed  CAS  Google Scholar 

  • Nemolato S, Restivo A, Cabras T, Coni P, Zorcolo L, Orrù G, Fanari M, Cau F, Gerosa C, Fanni D, Messana I, Castagnola M, Casula G, Faa G et al (2012) Thymosin β 4 in colorectal cancer is localized predominantly at the invasion front in tumor cells undergoing epithelial esenchymal transition. Cancer Biol Ther 13(4):191–197

    Article  PubMed  CAS  Google Scholar 

  • Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT et al (2012) Metastasis from oral cancer: an overview. Cancer Genomics Proteomics 9(5):329–335

    PubMed  CAS  Google Scholar 

  • Nummela P, Yin M, Kielosto M, Leaner V, Birrer MJ, Holtta E et al (2006) Thymosin β4 is a determinant of the transformed phenotype and invasiveness of S-adenosylmethionine decarboxylase-transfected fibroblasts. Cancer Res 66(2):701–712

    Article  PubMed  CAS  Google Scholar 

  • Oh JM, Ryoo IJ, Yang Y, Kim HS, Yang KH, Moon EY et al (2008) Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin β4 (Tββ4) in Hela cervical tumor cells. Cancer Lett 264(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Olasz L, Szalma J, Orsi E, Tornoczky T, Marko T, Nyarady Z et al (2010) Neoadjuvant chemotherapy: does it have benefits for the surgeon in the treatment of advanced squamous cell cancer of the oral cavity? Pathol Oncol Res: POR 16(2):207–212

    Article  PubMed  CAS  Google Scholar 

  • Orlichenko LS, Radisky DC (2008) Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 25(6):593–600

    Article  PubMed  CAS  Google Scholar 

  • Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ, Condeelis J et al (2010) Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 123:3662–3673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philp D, Goldstein AL, Kleinman HK et al (2004) Thymosin beta 4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev 125:113–125

    Article  PubMed  CAS  Google Scholar 

  • Piao Z, Hong CS, Jung MR, Choi C, Park YK et al (2014) Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway. Biochem Biophys Res Commun 452(3):858–864

    Article  PubMed  CAS  Google Scholar 

  • Proia NK, Paszkiewicz GM, Nasca MA, Franke GE, Pauly JL et al (2006) Smoking and smokeless tobacco-associated human buccal cell mutations and their association with oral cancer—a review. Cancer Epidemiol Biomarkers Prev 15(6):1061–1077

    Article  PubMed  CAS  Google Scholar 

  • Qiu P, Wheater MK, Qiu Y, Sosne G et al (2011) Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J 25(6):1815–1826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ricci-Vitiani L, Mollinari C, di Martino S, Biffoni M, Pilozzi E, Pagliuca A, de Stefano MC, Circo R, Merlo D, De Maria R, Garaci E et al (2010) Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. FASEB J 24(11):4291–4301

    Article  PubMed  CAS  Google Scholar 

  • Ryu YK, Lee YS, Lee GH, Song KS, Kim YS, Moon EY et al (2012) Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int J Cancer 131(9):2067–2077

    Article  PubMed  CAS  Google Scholar 

  • Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15(1):87–96

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Backert S (2005) Cortactin: an Achilles’ heel of the actin cytoskeleton targeted by pathogens. Trends Microbiol 13(4):181–189

    Article  PubMed  CAS  Google Scholar 

  • Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C et al (2013) Roles and mechanisms of β-thymosins in cell migration and cancer metastasis: an update. Cancer Invest 31(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22(4):337–358

    Article  PubMed  CAS  Google Scholar 

  • Tapia T, Ottman R, Chakrabarti R et al (2011) LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells. Mol Cancer 10(10):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Tokura Y, Nakayama Y, Fukada S, Nara N, Yamamoto H et al (2011) Muscle injury-induced thymosin b4 acts as a chemoattractant for myoblasts. J Biochem 149:43–48

    Article  PubMed  CAS  Google Scholar 

  • Vigneswaran N, Wu J, Sacks P, Gilcrease M, Zacharias W et al (2005) Microarray gene expression profiling of cell lines from primary and metastatic tongue squamous cell carcinoma: possible insights from emerging technology. J Oral Pathol Med 34(2):77–86

    Article  PubMed  CAS  Google Scholar 

  • Vitari AC, Deak M, Collins BJ, Morrice N, Prescott AR, Phelan A, Humphreys S, Alessi DR et al (2004) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochem J 378(1):257–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang WS, Chen PM, Hsiao HL, Ju SY, Su Y et al (2003) Overexpression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22(21):3297–3306

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Zeng FQ, Zhu ZH, Jiang GS, Lv L, Wan F, Dong R, Xiao XY, Xing SA et al (2012) Evaluation of thymosin β4 in the regulation of epithelial-mesenchymal ransformation in urothelial carcinoma. Urol Oncol 30(2):167–176

    Article  PubMed  CAS  Google Scholar 

  • Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

    Article  PubMed  Google Scholar 

  • Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF et al (2001) Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 48:367–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wirsching HG, Krishnan S, Florea AM, Frei K, Krayenbühl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G et al (2014) Thymosin β 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain 137(Pt 2):433–448

    Article  PubMed  Google Scholar 

  • Xu TJ, Wang Q, Ma XW, Zhang Z, Zhang W, Xue XC, Zhang C, Hao Q, Li WN, Zhang YQ, Li M et al (2013) A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing. Drug Des Devel Ther 7:1075–1088

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Wyckoff J, Condeelis J et al (2005) Cell migration in tumors. Curr Opin Cell Biol 17(5):559–564

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Foletta V, Bernard O, Itoh K et al (2003) A role for LIM kinase in cancer invasion. Proc Natl Acad Sci U S A 100(12):7247–7252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu CC, Tsai LL, Wang ML, Yu CH, Lo WL, Chang YC, Chiou GY, Chou MY, Chiou SH et al (2013) miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res 73(11):3425–3440

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feurino LW, Zhai Q, Wang H, Fisher WE, Chen C, Yao Q, Li M et al (2008) Thymosin β4 is overexpressed in human pancreatic cancer cells and stimulates proinflammatory cytokine secretion and JNK activation. Cancer Biol Ther 7(3):419–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong LP, Zhang CP, Ren GX, Guo W, William WN Jr, Sun J et al (2013) Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol 31(6):744–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2005080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Doo Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: G. J. Peters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, KO., Lee, JI., Hong, SP. et al. Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma. Amino Acids 48, 117–127 (2016). https://doi.org/10.1007/s00726-015-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2070-6

Keywords

Navigation