Skip to main content
Log in

Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate–cysteine ligase subunits

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate–cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser51 phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AARE:

Amino acid response element

ATF4:

Activating transcription factor 4

CARE:

CCAAT enhancer-binding protein–activating transcription factor response element

eIF2α:

Eukaryotic initiation factor 2, subunit alpha

EpRE:

Electrophile response element

GCN2:

General control non-derepressible 2, also known as eIF2α kinase 4

GCL:

Glutamate–cysteine ligase

GCLC:

Glutamate–cysteine ligase catalytic subunit

GCLM:

Glutamate–cysteine ligase modifier subunit

GSH:

Glutathione

GSSG:

Glutathione disulfide

MEF:

Murine embryonic fibroblast

Nrf2:

Nuclear factor erythroid 2-related factor 2

References

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111:1–14

    Article  PubMed  Google Scholar 

  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cereser C, Guichard J, Drai J, Bannier E, Garcia I et al (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr 752:123–132

    Article  CAS  Google Scholar 

  • Chan JY, Kwong M (2000) Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 1517:19–26

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP (2005) Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280:33766–33774

    Article  PubMed  CAS  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    Article  PubMed  CAS  Google Scholar 

  • Dickinson DA, Levonen AL, Moellering DR, Arnold EK, Zhang H et al (2004) Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med 37:1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE Jr, Hwang J, Stipanuk MH (2007) Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 293:E62–E69

    Article  PubMed  CAS  Google Scholar 

  • Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511

    Article  PubMed  CAS  Google Scholar 

  • Emmert SW, El-Bayoumy K, Das A, Sun YW, Amin S et al (2012) Induction of lung glutathione and glutamylcysteine ligase by 1,4-phenylenebis(methylene)selenocyanate and its glutathione conjugate: role of nuclear factor-erythroid 2-related factor 2. Free Radic Biol Med 52:2064–2071

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30:1–12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30:86–98

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fukagawa NK, Ajami AM, Young VR (1996) Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am J Physiol 270:E209–E214

    PubMed  CAS  Google Scholar 

  • Fukagawa NK, Yu YM, Young VR (1998) Methionine and cysteine kinetics at different intakes of methionine and cysteine in elderly men and women. Am J Clin Nutr 68:380–388

    PubMed  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    PubMed Central  PubMed  CAS  Google Scholar 

  • Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Bridges RJ, Meister A (1978) Evidence that the γ-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and elective inhibition of enzymes. Proc Natl Acad Sci USA 175:5405–5408

    Article  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  • Hartmanová T, Tambor V, Lenčo J, Staab-Weijnitz CA, Maser E, Wsól V (2013) S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity. Chem Biol Interact 202:136–145

    Article  PubMed  CAS  Google Scholar 

  • Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y et al (2012) Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 40:10228–10239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang CS, Anderson ME, Meister A (1993) Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 268:20578–20583

    PubMed  CAS  Google Scholar 

  • Iles KE, Liu RM (2005) Mechanisms of glutamate cysteine ligase (GCL) induction by 4-hydroxynonenal. Free Radic Biol Med 38:547–556

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Battaglia E, Burkholz T, Peng D, Bagrel D, Montenarh M (2012) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 25:588–604

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Janssen-Heininger YM, Nolin JD, Hoffman SM, van der Velden JL, Tully JE et al (2013) Emerging mechanisms of glutathione-dependent chemistry in biology and disease. J Cell Biochem 114:1962–1968

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25:715–744

    Article  PubMed  CAS  Google Scholar 

  • Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M (2005) Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25:8044–8051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kilberg MS, Balasubramanian M, Fu L, Shan J (2012) The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 3:295–306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC et al (2004) Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys 423:116–125

    Article  PubMed  CAS  Google Scholar 

  • Kwon YH, Stipanuk MH (2001) Cysteine regulates expression of cysteine dioxygenase and γ-glutamylcysteine synthetase in cultured rat hepatocytes. Am J Physiol Endocrinol Metab 280:E804–E815

    PubMed  CAS  Google Scholar 

  • Lauterburg BH, Mitchell JR (1987) Therapeutic doses of acetaminophen stimulate the turnover of cysteine and glutathione in man. J Hepatol 4:206–211

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Londono M, Hirschberger LL, Stipanuk MH (2004) Regulation of cysteine dioxygenase and γ-glutamylcysteine synthetase is associated with hepatic cysteine level. J Nutr Biochem 15:112–122

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Kang J, Stipanuk MH (2006) Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation. Biochem J 393:181–190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JI, Dominy JE Jr, Sikalidis AK, Hirschberger LL, Wang W, Stipanuk MH (2008) HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway. Physiol Genomics 33:218–229

    Article  PubMed  CAS  Google Scholar 

  • Li M, Chiu JF, Kelsen A, Lu SC, Fukagawa NK (2009) Identification and characterization of an Nrf2-mediated ARE upstream of the rat glutamate cysteine ligase catalytic subunit gene (GCLC). J Cell Biochem 107:944–954

    Article  PubMed  CAS  Google Scholar 

  • Liu RM, Gao L, Choi J, Forman HJ (1998) γ-Glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 275:L861–L869

    PubMed  CAS  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    Article  PubMed  CAS  Google Scholar 

  • Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry (Mosc) 71:962–974

    Article  CAS  Google Scholar 

  • Mizuno K, Kume T, Muto C, Takada-Takatori Y, Izumi Y et al (2011) Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2)–antioxidant-response element (ARE) pathway is essential for neuroprotective effects of sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. J Pharmacol Sci 115:320–328

    Article  PubMed  CAS  Google Scholar 

  • Moinova HR, Mulcahy RT (1999) Up-regulation of the human γ-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun 261:661–668

    Article  PubMed  CAS  Google Scholar 

  • Nerland DE (2007) The antioxidant/electrophile response element motif. Drug Metab Rev 39:235–248

    Article  PubMed  CAS  Google Scholar 

  • Palii SS, Kays CE, Deval C, Bruhat A, Fafournoux P, Kilberg MS (2009) Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids 37:79–88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pastore A, Piemonte F (2012) S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 46:279–292

    Article  PubMed  CAS  Google Scholar 

  • Purdom-Dickinson SE, Lin Y, Dedek M, Morrissy S, Johnson J, Chen QM (2007) Induction of antioxidant and detoxification response by oxidants in cardiomyocytes: evidence from gene expression profiling and activation of Nrf2 transcription factor. J Mol Cell Cardiol 42:159–176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rabinkov A, Miron T, Mirelman D, Wilchek M, Glozman S et al (2000) S-Allylmercaptoglutathione: the reaction product of allicin with glutathione possesses SH-modifying and antioxidant properties. Biochim Biophys Acta 1499:144–153

    Article  PubMed  CAS  Google Scholar 

  • Shan J, Lopez MC, Baker HV, Kilberg MS (2010) Expression profiling after activation of the amino acid deprivation response in HepG2 human hepatoma cells. Physiol Genomics 41:315–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sikalidis AK, Stipanuk MH (2010) Growing rats respond to a sulfur amino acid-deficient diet by phosphorylation of the alpha subunit of eukaryotic initiation factor 2 heterotrimeric complex and induction of adaptive components of the integrated stress response. J Nutr 140:1080–1085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sikalidis AK, Lee JI, Stipanuk MH (2011) Gene expression and integrated stress response in HepG2/C3A cells cultured in amino acid deficient medium. Amino Acids 41:159–171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Dominy JE Jr (2006) Surprising insights that aren’t so surprising in the modeling of sulfur amino acid metabolism. Amino Acids 30:251–256

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Coloso RM, Garcia RA, Banks MF (1992) Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J Nutr 122:420–427

    PubMed  CAS  Google Scholar 

  • Storch KJ, Wagner DA, Burke JF, Young VR (1990) [1-13C; methyl-2H3]methionine kinetics in humans: methionine conservation and cystine sparing. Am J Physiol 258:E790–E798

    PubMed  CAS  Google Scholar 

  • Storch KJ, Wagner DA, Young VR (1991) Methionine kinetics in adult men: effects of dietary betaine on l-[2H3-methyl-1-13C]methionine. Am J Clin Nutr 54:386–394

    PubMed  CAS  Google Scholar 

  • Takahashi M, Nagai T, Okamura N, Takahashi H, Okano A (2002) Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cysteine uptake of bovine embryos. Biol Reprod 66:562–567

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N, Ikeda Y (1998) γ-Glutamyl transpeptidase: catalytic mechanism and gene expression. Adv Enzymol Relat Areas Mol Biol 72:239–278

    PubMed  CAS  Google Scholar 

  • Tipnis SR, Blake DG, Shepherd AG, McLellan LI (1999) Overexpression of the regulatory subunit of γ-glutamylcysteine synthetase in HeLa cells increases γ-glutamylcysteine synthetase activity and confers drug resistance. Biochem J 337:559–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274:33627–33636

    Article  PubMed  CAS  Google Scholar 

  • Yan CY, Ferrari G, Greene LA (1995) N-acetylcysteine-promoted survival of PC12 cells is glutathione-independent but transcription-dependent. J Biol Chem 270:26827–26832

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Court N, Forman HJ (2007) Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells. Redox Rep 12:101–106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. David Ron (New York University School of Medicine, New York, NY, USA) for providing the Gcn2 −/− MEFS; Dr. Randal Kaufman (Sanford Burnham Medical Research Medical Institute, La Jolla, CA, USA) for providing the eIF2α(ala/ala) MEFs; and Dr. M. W. Lieberman (Methodist Hospital Research Institute, Houston, TX) for providing Gclc –/– MEFs. The research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Numbers DK-083473 and Grant DK-056649. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha H. Stipanuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikalidis, A.K., Mazor, K.M., Lee, JI. et al. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate–cysteine ligase subunits. Amino Acids 46, 1285–1296 (2014). https://doi.org/10.1007/s00726-014-1687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1687-1

Keywords

Navigation