Skip to main content
Log in

Direct one-step labeling of cysteine residues on peptides with [11C]methyl triflate for the synthesis of PET radiopharmaceuticals

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Radiolabeled peptides have emerged as an attractive platform for the diagnostic and therapeutic oncology. However, the 11C-radiolabeling of peptides for positron emission tomography (PET) has been poorly explored, owing to the relatively short half-life of carbon-11 (t 1/2 = 20.3 min) and time-consuming multi-step radiochemical reactions. Existing methods have found limited use and are not routinely encountered in the production of radiotracers. Herein, we propose a facile one-step direct 11C-methylation of cysteine residues in peptides using [11C]methyl triflate under ambient temperatures (20 °C) and short reaction times, on the order of seconds. Good regioselectivity of this method was demonstrated by HPLC in a simple peptide (glutathione, GSH) and a more complex test decapeptide (Trp-Tyr-Trp-Ser-Arg-Cys-Lys-Trp-Thr-Gly) bearing multiple nucleophilic sites. In addition, we extend this method towards the synthesis of [11C]Cys(Me)-[Tyr3-octreotate] as a demonstration of applicability for peptides of biological interest. This octreotate derivative was obtained in non-decay-corrected radiochemical yields of 11 ± 2 % (n = 3) with a synthesis time of approx. 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PET:

Positron emission tomography

GSH:

Glutathione

SPPS:

Solid-phase peptide synthesis

SST:

Somatostatin

SPECT:

Single-photon emission computed tomography

[11C]MB-CHO:

p-[11C]methyoxybenzaldehyde

HPLC:

High-performance liquid chromatography

[11C]MeOTf:

[11C]methyl trifluoromethylsulfonate; [11C]methyl triflate

Gly-Sar:

Glycylsarcosine

DMS:

Dimethyl sulfate

MMS:

Methyl methanesulfonate

CNSC:

Canadian Nuclear Safety Commission

Fmoc:

Fluorenylmethyloxycarbonyl

HBTU:

O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate

DIPEA:

N,N-diisopropylethylamine

DMF:

N,N-dimethylformamide

TFA:

Trifluoroacetate; trifluoroacetic acid

TIPS:

Triisopropylsilane

HRMS:

High-resolution mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption/ionization/time-of-flight

DMSO:

Dimethyl sulfoxide

GSMe:

S-methylglutathione

RP-HPLC:

Reversed-phase high-performance liquid chromatography

MEK:

Methyl ethyl ketone

MeCN:

Acetonitrile

ndc:

Non-decay-corrected

RCY:

Radiochemical yield

EtOH:

Ethanol

References

  • Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR (2011) Radiopeptide imaging and therapy in Europe. J Nucl Med 52:42S–55S

    Article  PubMed  CAS  Google Scholar 

  • Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Boffa LC, Bolognesi C (1985) Methylating agents: their target amino acids in nuclear proteins. Carcinogenesis 6:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • De Jong M, Valkema R, Jamar F, Kvols LK, Kwekkeboom DJ, Breeman WA, Bakker WH, Smith C, Pauwels S, Krenning EP (2002) Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med 32:133–140

    Article  PubMed  Google Scholar 

  • Decristoforo C, Maina T, Nock B, Gabriel M, Cordopatis P, Moncayo R (2003) 99mTc-Demotate 1: first data in tumour patients—results of a pilot/phase I study. Eur J Nucl Med Mol Imaging 30:1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

    Article  PubMed  CAS  Google Scholar 

  • Franzén HM, Ragnarsson U, Någren K, Långström B (1987) 11C-labelling of substance P. Preparation of a homocysteine-containing precursor and its subsequent application in the synthesis of the labelled neuropeptide. J Chem Soc Perkin Trans I:2241–2247

    Article  Google Scholar 

  • Hartvig P, Någren K, Lundberg PO, Muhr C, Terenius L, Lundqvist H, Lärksfors L, Långström B (1986) Kinetics of four 11C-labelled enkephalin peptides in the brain, pituitary and plasma of Rhesus monkeys. Regul Pept 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Heinrikson RL (1970) Selective S-methylation of cysteine in proteins and peptides. Biochem Biophys Res Commun 41:967–972

    Article  PubMed  CAS  Google Scholar 

  • Henriksen G, Schottelius M, Poethko T, Hauser A, Wolf I, Schwaiger M, Wester H-J (2004) Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET. Eur J Nucl Med Mol Imaging 31:1653–1657

    Article  PubMed  CAS  Google Scholar 

  • Jewett DM (1992) A simple synthesis of [11C]methyl triflate. Appl Radiat Isot 43:1383–1385

    Article  CAS  Google Scholar 

  • Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, Dimitrakopoulou-Strauss A (2006) Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:460–466

    Article  PubMed  CAS  Google Scholar 

  • Långström B, Sjöberg S, Ragnarsson U (1981) A rapid and convenient method for specific 11C-labelling of synthetic polypeptides containing methionine. J Label Compd Radiopharm 18:479–487

    Article  Google Scholar 

  • Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJG, Goldenberg DM, Boerman OC (2010) A novel facile method of labeling octreotide with 18F-fluorine. J Nucl Med 51:454–461

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist H, Tolmachev V (2002) Targeting peptides and positron emission tomography. Biopolymers (Pept Sci) 66:381–392

    Article  CAS  Google Scholar 

  • Marazano C, Maziere M, Berger G, Comar D (1977) Synthesis of methyl iodide-11C and formaldehyde-11C. Int J Appl Radiat Isot 28:49–52

    Article  PubMed  CAS  Google Scholar 

  • Meisetschläger G, Poethko T, Stahl A, Wolf I, Scheidhauer K, Schottelius M, Herz M, Wester H-J, Schwaiger M (2006) Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. J Nucl Med 47:566–573

    PubMed  Google Scholar 

  • Nabulsi NB, Smith DE, Kilbourn MR (2005) [11C]Glycylsarcosine: synthesis and in vivo evaluation as a PET tracer of PepT2 transporter function in kidney of PepT2 null and wild-type mice. Bioorg Med Chem 13:2993–3001

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Bender ML (1969) Modification of α-chymotrypsin by methyl p-nitrobenzenesulfonate. J Am Chem Soc 91:1566–1567

    Article  PubMed  CAS  Google Scholar 

  • Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397

    Article  PubMed  CAS  Google Scholar 

  • Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Comm 29:193–207

    Article  Google Scholar 

  • Reubi J-C (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  PubMed  CAS  Google Scholar 

  • Roehm PC, Berg JM (1998) Selectivity of methylation of metal-bound cysteinates and its consequences. J Am Chem Soc 120:13083–13087

    Article  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  • Savige WE, Fontana A (1980) Oxidation of tryptophan to oxindolylalanine by dimethyl sulfoxide–hydrochloric acid. Int J Peptide Protein Res 15:285–297

    Article  CAS  Google Scholar 

  • Schottelius M, Poethko T, Herz M, Reubi J-C, Kessler H, Schwaiger M, Wester H-J (2004) First 18F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin Cancer Res 10:3593–3606

    Article  PubMed  CAS  Google Scholar 

  • Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, Anderson CJ (2004) Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 10:8674–8682

    Article  PubMed  CAS  Google Scholar 

  • Tam JP, Wu C-R, Liu W, Zhang J-W (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J Am Chem Soc 113:6657–6662

    Article  CAS  Google Scholar 

  • Wang Q, Graham K, Schauer T, Fietz T, Mohammed A, Liu X, Hoffend J, Haberkorn U, Eisenhut M, Mier W (2004) Pharmacological properties of hydrophilic and lipophilic derivatives of octreotate. Nucl Med Biol 31:21–30

    Article  PubMed  Google Scholar 

  • Wängler C, Waser B, Alke A, Iovkova L, Buchholz HG, Niedermoser S, Jurkschat K, Fottner C, Bartenstein P, Schirrmacher R, Reubi J-C, Wester H-J, Wängler B (2010) One-step 18F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjugate Chem 21:2289–2296

    Article  Google Scholar 

  • Wängler C, Niedermoser S, Chin J, Orchowski K, Schirrmacher E, Jurkschat K, Iovkova-Berends L, Kostikov AP, Schirrmacher R, Wängler B (2012) One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat Protoc 7:1946–1955

    Article  PubMed  Google Scholar 

  • Weiner RE, Thakur ML (2001) Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med 31:296–311

    Article  PubMed  CAS  Google Scholar 

  • Wellings DA, Atherton E (1997) [4] Standard Fmoc protocols. Methods Enzymol 289:44–67

    Article  PubMed  CAS  Google Scholar 

  • Wester H-J, Schottelius M, Scheidhauer K, Meisetschläger G, Herz M, Rau FC, Reubi J-C, Schwaiger M (2003) PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging 30:117–122

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Mäcke HR, Waser B, Reubi J-C, Ginj M, Rasch H, Müller-Brand J, Hofmann M (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32:724

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Canada Foundation for Innovation (CFI) project no. 203639 to R.S.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schirrmacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, J., Vesnaver, M., Bernard-Gauthier, V. et al. Direct one-step labeling of cysteine residues on peptides with [11C]methyl triflate for the synthesis of PET radiopharmaceuticals. Amino Acids 45, 1097–1108 (2013). https://doi.org/10.1007/s00726-013-1562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1562-5

Keywords

Navigation