Skip to main content

Advertisement

Log in

Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Bovine serum albumin (BSA) promoted simple and efficient one-pot procedure was developed for the direct synthesis of 3,4-dihydropyrimidin-2(1H)-ones including potent mitotic kinesin Eg5 inhibitor monastrol under mild reaction conditions. The catalyst recyclability and gram scale synthesis have also been demonstrated to enhance the practical utility of process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CAL-B:

Candida antarctica lipase-B

DHPMs:

3,4-dihydropyrimidin-2(1H)-ones

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

PPL:

Porcine pancreas lipase

References

  • Banik BK, Reddy AT, Datta A, Mukhopadhyay C (2007) Microwave-induced bismuth nitrate-catalyzed synthesis of dihydropyrimidones via Biginelli condensation under solventless conditions. Tetrahedron Lett 48:7392–7394

    Article  CAS  Google Scholar 

  • Bhosale RS, Bhosale SV, Bhosale SV, Wang T, Zubaidha PK (2004) An efficient, high yield protocol for the one-pot synthesis of dihydropyrimidin-2(1H)-ones catalyzed by iodine. Tetrahedron Lett 45:9111–9113

    Article  CAS  Google Scholar 

  • Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity- oriented synthesis. Curr Opin Chem Biol 14:371–382

    Article  PubMed  CAS  Google Scholar 

  • Biginelli P (1893) Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz Chim Ital 23:360-413

    Google Scholar 

  • Borse BN, Borude VS, Shukla SR (2012) Synthesis of novel dihydropyrimidin-2(1H)-ones derivatives using lipase and their antimicrobial activity. Curr Chem Lett 1:59–68

    Article  CAS  Google Scholar 

  • Bose AK, Pednekar S, Ganguly SN, Chakraborty G, Manhas MS (2004) A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett 45:8351–8353

    Article  CAS  Google Scholar 

  • Boucher G, Sylvain R, Fargeas V, Dintinger T, Mathe-Allainmat M, Lebreton J, Tellier C (2005) Serum albumin-catalyzed trigger system by using a tandem kemp elimination/b-elimination reaction. ChemBioChem 6:807–810

    Article  PubMed  CAS  Google Scholar 

  • Chari MA, Mano A, Selvan ST, Mukkanti K, Vinu A (2009) Synthesis of 3,4-dihydropyrimidin-2-ones (DHPMs) using mesoporous aluminosilicate (AlKIT-5) catalyst with cage type pore structure. Tetrahedron 65:10608–10611

    Article  Google Scholar 

  • Chitra S, Pandiarajan K (2009) Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3,4- dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)thione: an improved high yielding protocol for the Biginelli reaction. Tetrahedron Lett 50:2222–2224

    Article  CAS  Google Scholar 

  • Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605

    Article  PubMed  CAS  Google Scholar 

  • Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) A one-pot Biginelli synthesis of 3,4- dihydropyrimidin-2-(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett 49:6119–6121

    Article  CAS  Google Scholar 

  • Debache A, Boumoud B, Amimour M, Belfaitah A, Rhouati S, Carboni B (2006) Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction. Tetrahedron Lett 47:5697–5699

    Article  CAS  Google Scholar 

  • De Souza ROMA, da Penha ET, Milagre HMS, Garden SJ, Esteves PM, Eberlin MN, Antunes OAC (2009) The three-component Biginelli reaction: a combined experimental and theoretical mechanistic investigation. Chem Eur J 15:9799–9804

    Article  PubMed  Google Scholar 

  • Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89

    Article  PubMed  Google Scholar 

  • Gore S, Baskaran S, Koenig B (2011) Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chem 13:1009–1013

    Article  CAS  Google Scholar 

  • Hojati SF, Gholizadeh M, Haghdoust M, Shafiezadeh F (2010) 1,3-Dichloro-5,5-dimethylhydantoin as a novel and efficient homogeneous catalyst in Biginelli reaction. Bull Kor Chem Soc 31:3238–3240

    Article  CAS  Google Scholar 

  • Hollfelder F, Kirby AJ, Tawfik DS (1996) Off-the-shelf proteins that rival tailor-made antibodies as catalysts. Nature 383:60–63

    Article  PubMed  CAS  Google Scholar 

  • Hudlicky T, Reed JW (2009) Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev 38:3117–3132

    Article  PubMed  CAS  Google Scholar 

  • Jain KS, Bariwal JB, Kathiravan MK, Phoujdar MS, Sahne RS, Chauhan BS, Shah AK, Yadav MR (2008) Recent advances in selective a1-adrenoreceptor antagonists as antihypertensive agents. Bioorg Med Chem 16:4759–4800

    Article  PubMed  CAS  Google Scholar 

  • Kappe CO (1997) A re-examination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. J Org Chem 62:7201–7204

    Article  PubMed  CAS  Google Scholar 

  • Kappe CO (1998) 4-Aryldihydropyrimidines via the Biginelli condensation: aza analogs of nifedipine-type calcium channel modulators. Molecules 3:1–9

    Article  CAS  Google Scholar 

  • Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur J Med Chem 35:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Kasana RC, Sharma UK, Sharma N, Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54:457–461

    Article  PubMed  CAS  Google Scholar 

  • Kidwai M, Saxena S, Khan MKR, Thukral SS (2005) Synthesis of 4-aryl-7,7-dimethyl-1,2,3,4,5,6,7,8- octahydroquinazoline-2-one/thione-5-one derivatives and evaluation as antibacterials. Eur J Med Chem 40:816–819

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Reymond JM (1998) An enantioselective fluorimetric assay for alcohol dehydrogenases using albumin-catalyzed-elimination of umbelliferone. Bioorg Med Chem Lett 8:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Maurya RA (2007) An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett 48:4569–4571

    Article  CAS  Google Scholar 

  • Kumar P, Sankar BR, Nasir G, Baig RB, Chandrashekaran S (2009) Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study. Eur J Med Chem 44:4192–4198

    Article  Google Scholar 

  • Lannou MI, Hélion F, Namy JL (2008) Applications of lanthanide trichloride hydrates, prepared from mischmetall, in the Biginelli reaction. Synlett 105-107

  • Li JT, Han JF, Yang JH, Li TS (2003) An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrasound Sonochem 10:119–122

    Article  CAS  Google Scholar 

  • Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  PubMed  CAS  Google Scholar 

  • Norberto DR, Vieira JM, de Souza AR, Bispo JA, Bonafe CFS (2012) Pressure & urea-induced denaturation of bovine serum albumin: considerations about protein heterogeneity. Open J Biophys 2:4–14

    Article  Google Scholar 

  • Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701

    Article  CAS  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  PubMed  CAS  Google Scholar 

  • Polshettiwar V, Varma RS (2007) Biginelli reaction in aqueous medium: a greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 48:7343–7346

    Article  CAS  Google Scholar 

  • Prasad AK, Arya P, Bhatia S, Sharma RK, Singh R, Singh BK, Van der Eycken E, Singh R, Olsen CE, Parmar VS (2009) Synthesis and lipase-catalysed enantioselective acylation studies on Ethyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones. Ind J Chem 48B:1738–1748

    CAS  Google Scholar 

  • Rafiee E, Jafari H (2006) A practical and green approach towards synthesis of dihydropyrimidinones: using heteropoly acids as efficient catalysts. Bioorg Med Chem Lett 16:2463–2466

    Article  PubMed  CAS  Google Scholar 

  • Ramalingan C, Park S-J, Lee I-S, Kwak Y-W (2010) A piperidinium triflate catalyzed Biginelli reaction. Tetrahedron 66:2987–2994

    Article  CAS  Google Scholar 

  • Reetz MT, Mondire R, Carballeira JD (2007) Enzyme promiscuity: first protein-catalyzed Morita–Baylis–Hillman reaction. Tetrahedron Lett 48:1679–1681

    Article  CAS  Google Scholar 

  • Riva S, Mendozza M, Carrea G, Chattopadhay P, Tramontano A (1998) Comparison of antibody and albumin catalyzed hydrolysis of steroidal p-Nitrophenylcarbonates. Appl Biochem Biotechnol 75:33–44

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Moorthy JN (2011) Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on Sterics, hydrogen bonding, and reinforced chirality. J Org Chem 76:396–402

    Article  PubMed  CAS  Google Scholar 

  • Santacoloma PA, Sin G, Gernaey KV, Woodley JM (2011) Multienzyme-catalyzed processes: next- generation biocatalysis. Org Process Res Develop 15:203–212

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  PubMed  CAS  Google Scholar 

  • Schnell B, Krenn W, Faber K, Kappe CO (2000) Synthesis and reactions of Biginelli-compounds. Part 23. chemoenzymatic syntheses of enantiomerically pure 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J Chem Soc Perkin Trans 1:4382–4389

    Article  Google Scholar 

  • Sharma N, Sharma UK, Salwan R, Kasana RC, Sinha AK (2011a) A synergic blend of newly isolated Pseudomonas mandelii KJLPB5 and [hmim]Br for chemoselective 2º aryl alcohol oxidation in H2O2: synthesis of aryl ketone or aldehydes via sequential dehydration-oxidative C = C cleavage. Catal Lett 141:616–622

    Article  CAS  Google Scholar 

  • Sharma N, Sharma UK, Kumar R, Kumar R, Katoch N, Sinha AK (2011b) First bovine serum albumin- promoted synthesis of enones, cinnamic acids and coumarins in ionic liquid: an insight into the role of protein impurities in porcine pancreas lipase for olefinic bond formation. Adv Synth Catal 353:871–878

    Article  CAS  Google Scholar 

  • Sharma N, Sharma UK, Kumar R, Richa AK, Sinha AK (2012a) Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Adv 2:10648–10651

    Article  CAS  Google Scholar 

  • Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK (2009) Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a unique synergism of CAL-B and [hmim]Br for the metal-free H2O2 activation. Org Lett 11:4846–4848

    Article  PubMed  CAS  Google Scholar 

  • Sharma UK, Sharma N, Salwan R, Kumar R, Kasana RC, Sinha AK (2012b) Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains. J Sci Food Agric 92:610–616

    Article  CAS  Google Scholar 

  • Shen ZL, Xu XP, Ji SJ (2010) Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J Org Chem 75:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Strohmeier GA, Sovic T, Steinkellner G, Hartner FS, Andryushkova A, Purkarthofer T, Glieder A, Gruber K, Griengl H (2009) Investigation of lipase-catalyzed Michael-type carbon–carbon bond formations. Tetrahedron 65:5663–5668

    Article  CAS  Google Scholar 

  • Suzuki I, Iwata Y, Takeda K (2008) Biginelli reactions catalyzed by hydrazine type organocatalyst. Tetrahedron Lett 49:3238–3241

    Article  CAS  Google Scholar 

  • Tamaddon F, Razmi Z, Jafari AA (2010) Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett 51:1187–1189

    Article  CAS  Google Scholar 

  • Taylor RP, Chau V, Bryner C, Berga S (1975) Bovine serum albumin as a catalyst. II. Characterization of the kinetics. J Am Chem Soc 97:1934–1943

    Article  PubMed  CAS  Google Scholar 

  • Van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  PubMed  Google Scholar 

  • Walker JM (ed) (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Humana press, Totowa, pp 571–607

    Google Scholar 

  • Wang J-L, Liu B-K, Yin C, Wu Q, Lin X-F (2011) Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron 67:2689–2692

    Article  CAS  Google Scholar 

  • Wipf P, Stephenson CRJ, Okumura K (2003) Transition-metal-mediated cascade reactions: C, C-dicyclopropylmethylamines by way of double C, C-σ-bond insertion into bicyclobutanes. J Am Chem Soc 125:14694–14695

    Article  PubMed  CAS  Google Scholar 

  • Yarim M, Saraç S, Kiliç FS, Erol K (2003) Synthesis and in vitro calcium antagonist activity of 4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione derivatives. Farmaco 58:17–24

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Liu C, Luo G (2007) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg Med Chem Lett 17:3508–3510

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Znabet A, Polak MM, Janssen E, de Kanter FJJ, Turner NJ, Orru RVA, Ruijter E (2010a) A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem Commun 46:7918–7920

    Article  CAS  Google Scholar 

  • Znabet A, Zonneveld J, Janssen E, de Kanter FJJ, Helliwell M, Turner NJ, Ruijter E, Orru RVA (2010b) Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet–Spengler-type cyclization sequence. Chem Commun 46:7706–7708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

UKS, NS, RK are indebted to CSIR, New Delhi, for the award of research fellowships. The authors gratefully acknowledge the Director, IHBT Palampur, for his kind cooperation and encouragement as well as project MLP0025 for financial assistance. IHBT Communication No. 2371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sinha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, U.K., Sharma, N., Kumar, R. et al. Biocatalysts for multicomponent Biginelli reaction: bovine serum albumin triggered waste-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Amino Acids 44, 1031–1037 (2013). https://doi.org/10.1007/s00726-012-1437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1437-1

Keywords

Navigation