Skip to main content
Log in

A proteomic Ramachandran plot (PRplot)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Each protein structure can be characterized by the average values of the main chain torsion angles ϕ and ψ and, as a consequence, be plotted on a bidimensional diagram, which resembles the Ramachandran plot. Here, we describe a proteomic ϕψ plot (PRplot) where each protein structure is associated with one point, allowing in this way to represent the entire protein structure universe. It was verified that the PRplot is a robust tool since it does not depend on the dimension of the proteins, on the crystallographic resolution of the structures, nor on the biological source; moreover, it is little affected by disordered and structurally uncharacterized residues. The proteins mapped on the PRplot tend to cluster in three regions that correspond to the structures rich in alpha-helices, in beta-strands, and in both helices and strands, and are distributed along a sigmoidal curve that connect these three highly populated regions. PRplots are a unique instrument to project all protein structures on a single bidimensional plane where the entire structural complexity is reduced to a striking simplicity, with the sigmoid curve clearly delineating the space fraction accessible to a stable protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2007) Data growth and its impact on the SCOP database: new developments. Nucl Acids Res 36:D419–D425

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics. Academic Press, London

    Google Scholar 

  • Berkjolz DS, Shapovalov MV, Dunbrack RLJ, Karplus PA (2009) Conformation dependence of backbone geometry in proteins. Structure 17:1316–1325

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  • Bernardo P, Blanchard L, Timmins P, Marion D, Ruigrok RWH, Blackledge M (2005) A structural model for unfolded proteins from residual dipolar coupling and small-angle X-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542

    Article  PubMed  CAS  Google Scholar 

  • Branden VI, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689

    Article  Google Scholar 

  • Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 16:297–305

    Article  Google Scholar 

  • Carugo O (2010a) Clustering criteria and algorithm. Methods Mol Biol 609:175–196

    Article  PubMed  Google Scholar 

  • Carugo O (2010b) Clustering tendency in the protein fold space. Bioinformation 4:347–351

    Article  PubMed  Google Scholar 

  • Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst D 66:12–21

    Article  Google Scholar 

  • Dowdy S, Wearden S, Chilko D (2004) Statistics for research. Wiley, Hoboken

    Book  Google Scholar 

  • Grabarse W, Vaupel M, Vorholt JA, Shima S, Thauer RK, Wittershagen A, Bourenkov G, Bartunik HD, Ermler U (1999) The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Structure 7:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Griep S, Hobohm U (2009) PDBselect 1992–2009 and PDBfilter-select. Nucl Acids Res 38:D318–D319

    Article  PubMed  Google Scholar 

  • Holm L, Sander C (2000) Evaluation of protein models by atomic solvation preference. J Mol Biol 225:93–105

    Article  Google Scholar 

  • Hovmoeller S, Zhou T, Ohlson T (2002) Conformations of amino acids in proteins. Acta Cryst D 58:768–776

    Article  Google Scholar 

  • Jha AK, Colubri A, Freed K, Sosnick T (2005) Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc Natl Acad Sci USA 102:13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM (2001) Introduction to protein architecture. Oxford University Press, Oxford

    Google Scholar 

  • Mizoue LS, Baxan JF, Johnson WC, Handel TM (1999) Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry 38:1402–1414

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchical classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M (2000) A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J 19:2424–2434

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran G, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain conformations. J Mol Biol 7:95–99

    Article  PubMed  CAS  Google Scholar 

  • Samudrala R, Levitt M (2000) Decoys ‘R’ Us: a database of incorrect conformations to improve protein structure prediction. Protein Sci 9:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Sikic K, Carugo O (2010) Protein sequence redundancy: comparison of various methods. Bioinformation 5:234–239

    Article  PubMed  Google Scholar 

  • Song J, Lee MS, Carlberg I, Vener AV, Markley JL (2006) Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications. Biochemistry 45:15633–15643

    Article  PubMed  CAS  Google Scholar 

  • Vogt J, Schulz GE (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7:1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Walther D, Cohen FE (1999) Conformational attractors on the Ramachandran map. Acta Cryst D 55:506–517

    Article  CAS  Google Scholar 

  • Wang G, Dunbrack RLJ (2003) PISCES: a protein sequence culling server. Bioinformatics 19:1589–1591

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Faraggi E (2010) Prediction of one-dimensional structural properties of proteins by integrated neural networks. In: Rangwala H, Karypis G (eds) Introduction to protein structure prediction. Wiley Series in Bioinformatics. Wiley, Hobokan, pp 45–65

    Chapter  Google Scholar 

  • Zhou AQ, O’Hern CS, Regan L (2011) Revisiting the Ramachandran plot from a new angle. Protein Sci 20:1166–1171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the BIN-III project of the Austrian GEN-AU initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliviero Carugo or Kristina Djinović-Carugo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carugo, O., Djinović-Carugo, K. A proteomic Ramachandran plot (PRplot). Amino Acids 44, 781–790 (2013). https://doi.org/10.1007/s00726-012-1402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1402-z

Keywords

Navigation