Skip to main content

Advertisement

Log in

Glutamate induces neutrophil cell migration by activating class I metabotropic glutamate receptors

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Leukocytes are recruited at the site of infection or injury as a part of the innate immune system, and play a very critical role in fighting the invading microorganisms and/or healing wounds. Neutrophils are the most abundant leukocytes in healthy humans and are the principal cell types that arrive at the target site in the initial phase of this process. Previous studies from our laboratory have shown that the amino acid glutamate is a novel chemotaxis-inducing factor for human neutrophils. In this report, we provide evidences that clearly demonstrate that the glutamate-induced neutrophil cell migration activity is mediated by the class I metabotropic glutamate receptors. Our results further show that a specific integrin β2 (ITG β2) receptor, namely LFA1 (αLβ2) is activated upon glutamate treatment and is required for further downstream signaling events leading to increased migration of human neutrophil cells. Following glutamate stimulation, LFA1 is phosphorylated by the Src Kinase Lck at the Y735 residue, which triggers a downstream signaling cascade leading to activation of PI3K, Syk, Vav and finally the Rho family GTPase, Rac2. Interestingly, glutamate was previously found to be present in elevated levels in wound fluid. Furthermore, glutamate level was also found to go up following inflammation. Taken together, our study suggests a novel mode of neutrophil recruitment to the target site following an infection or injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albina JE, Abate JA, Mastrofrancesco B (1993) Role of ornithine as a proline precursor in healing wounds. J Surg Res 55(1):97–102

    Article  PubMed  CAS  Google Scholar 

  • Badwey JA, Curnutte JT, Berde CB, Karnovsky ML (1982) Cytochalasin E diminishes the lag phase in the release of superoxide by human neutrophils. Biochem Biophys Res Commun 106(1):170–174

    Article  PubMed  CAS  Google Scholar 

  • Bartemes KR, McKinney S, Gleich GJ, Kita H (1999) Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG. J Immunol 162(5):2982–2989

    PubMed  CAS  Google Scholar 

  • Benard V, Bohl BP, Bokoch GM (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274(19):13198–13204

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3(2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD (1998) Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22(4):295–299

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA (2000) Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci USA 97(10):5225–5230

    Article  PubMed  CAS  Google Scholar 

  • Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, Colgan SP (2002) Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem 277(17):14801–14811

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  • Couture C, Deckert M, Williams S, Russo FO, Altman A, Mustelin T (1996) Identification of the site in the Syk protein tyrosine kinase that binds the SH2 domain of Lck. J Biol Chem 271(39):24294–24299

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    PubMed  CAS  Google Scholar 

  • Engelsen B (1986) Neurotransmitter glutamate: its clinical importance. Acta Neurol Scand 74(5):337–355

    Article  PubMed  CAS  Google Scholar 

  • Fabbri M, Fumagalli L, Bossi G, Bianchi E, Bender JR, Pardi R (1999) A tyrosine-based sorting signal in the beta2 integrin cytoplasmic domain mediates its recycling to the plasma membrane and is required for ligand-supported migration. EMBO J 18(18):4915–4925

    Article  PubMed  CAS  Google Scholar 

  • Filippi MD, Harris CE, Meller J, Gu Y, Zheng Y, Williams DA (2004) Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat Immunol 5(7):744–751

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Franconi F, Miceli M, De Montis MG, Crisafi EL, Bennardini F, Tagliamonte A (1996) NMDA receptors play an anti-aggregating role in human platelets. Thromb Haemost 76(1):84–87

    PubMed  CAS  Google Scholar 

  • Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3

    Article  PubMed  Google Scholar 

  • Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol 170(8):4362–4372

    PubMed  CAS  Google Scholar 

  • Gasic GP, Hollmann M (1992) Molecular neurobiology of glutamate receptors. Annu Rev Physiol 54:507–536

    Article  PubMed  CAS  Google Scholar 

  • Genever PG, Maxfield SJ, Kennovin GD, Maltman J, Bowgen CJ, Raxworthy MJ, Skerry TM (1999a) Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J Invest Dermatol 112(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Genever PG, Wilkinson DJ, Patton AJ, Peet NM, Hong Y, Mathur A, Erusalimsky JD, Skerry TM (1999b) Expression of a functional N-methyl-d-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 93(9):2876–2883

    PubMed  CAS  Google Scholar 

  • Gill SS, Pulido OM, Mueller RW, McGuire PF (1998) Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull 46(5):429–434

    Article  PubMed  CAS  Google Scholar 

  • Glaasker E, Konings WN, Poolman B (1996) The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes. Mol Membr Biol 13(3):173–181

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Chattopadhyay D (2009) Glutamate is the chemotaxis-inducing factor in placental extracts. Amino Acids 37(2):271–277

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Yamada H, Uehara S, Morimoto R, Muroyama A, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2003) Secretory granule-mediated co-secretion of l-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J Biol Chem 278(3):1966–1974

    Article  PubMed  CAS  Google Scholar 

  • Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269(49):30749–30752

    PubMed  CAS  Google Scholar 

  • Hickey MJ, Granger DN, Kubes P (1999) Molecular mechanisms underlying IL-4-induced leukocyte recruitment in vivo: a critical role for the alpha 4 integrin. J Immunol 163(6):3441–3448

    PubMed  CAS  Google Scholar 

  • Hinoi E, Yoneda Y (2001) Expression of GluR6/7 subunits of kainate receptors in rat adenohypophysis. Neurochem Int 38(6):539–547

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Fujimori S, Nakamura Y, Balcar VJ, Kubo K, Ogita K, Yoneda Y (2002) Constitutive expression of heterologous N-methyl-d-aspartate receptor subunits in rat adrenal medulla. J Neurosci Res 68(1):36–45

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Fujimori S, Yoneda Y (2003) Modulation of cellular differentiation by N-methyl-d-aspartate receptors in osteoblasts. Faseb J 17(11):1532–1534

    PubMed  CAS  Google Scholar 

  • Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Hudspith MJ (1997) Glutamate: a role in normal brain function, anaesthesia, analgesia and CNS injury. Br J Anaesth 78(6):731–747

    Article  PubMed  CAS  Google Scholar 

  • Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, Nakazato Y, Ozawa S (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27(30):7987–8001

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Hwang JM, Kubes P (2007) Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol 120(1):3–10

    Article  PubMed  CAS  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179(1):4–29

    Article  PubMed  CAS  Google Scholar 

  • Kiyama H, Sato K, Tohyama M (1993) Characteristic localization of non-NMDA type glutamate receptor subunits in the rat pituitary gland. Brain Res Mol Brain Res 19(3):262–268

    Article  PubMed  CAS  Google Scholar 

  • Koyasu S (2003) The role of PI3K in immune cells. Nat Immunol 4(4):313–319

    Article  PubMed  CAS  Google Scholar 

  • Kristensen P (1993) Differential expression of AMPA glutamate receptor mRNAs in the rat adrenal gland. FEBS Lett 332(1–2):14–18

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki T, Takata M, Yamanashi Y, Inazu T, Taniguchi T, Yamamoto T, Yamamura H (1994) Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J Exp Med 179(5):1725–1729

    Article  PubMed  CAS  Google Scholar 

  • Lawand NB, McNearney T, Westlund KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86(1–2):69–74

    Article  PubMed  CAS  Google Scholar 

  • Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One 5(11):e14123

    Article  PubMed  CAS  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Puri KD, Penninger JM, Kubes P (2007) Leukocyte PI3Kgamma and PI3Kdelta have temporally distinct roles for leukocyte recruitment in vivo. Blood 110(4):1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K (2006) From the Cover: indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci USA 103(32):12161–12166

    Article  PubMed  CAS  Google Scholar 

  • Medeiros AI, Silva CL, Malheiro A, Maffei CM, Faccioli LH (1999) Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the beta-glucan present in their cell wall. Br J Pharmacol 128(7):1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202

    Article  PubMed  CAS  Google Scholar 

  • Nurmi SM, Autero M, Raunio AK, Gahmberg CG, Fagerholm SC (2007) Phosphorylation of the LFA-1 integrin beta2-chain on Thr-758 leads to adhesion, Rac-1/Cdc42 activation, and stimulation of CD69 expression in human T cells. J Biol Chem 282(2):968–975

    Article  PubMed  CAS  Google Scholar 

  • Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283(1):R7–R28

    PubMed  CAS  Google Scholar 

  • Omote K, Kawamata T, Kawamata M, Namiki A (1998) Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res 787(1):161–164

    Article  PubMed  CAS  Google Scholar 

  • Patel KD (1999) Mechanisms of selective leukocyte recruitment from whole blood on cytokine-activated endothelial cells under flow conditions. J Immunol 162(10):6209–6216

    PubMed  CAS  Google Scholar 

  • Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11(3):260–273

    Article  PubMed  CAS  Google Scholar 

  • Pinho V, Russo RC, Amaral FA, de Sousa LP, Barsante MM, de Souza DG, Alves-Filho JC, Cara DC, Hayflick JS, Rommel C, Ruckle T, Rossi AG, Teixeira MM (2007) Tissue- and stimulus-dependent role of phosphatidylinositol 3-kinase isoforms for neutrophil recruitment induced by chemoattractants in vivo. J Immunol 179(11):7891–7898

    PubMed  CAS  Google Scholar 

  • Pisegna S, Zingoni A, Pirozzi G, Cinque B, Cifone MG, Morrone S, Piccoli M, Frati L, Palmieri G, Santoni A (2002) Src-dependent Syk activation controls CD69-mediated signaling and function on human NK cells. J Immunol 169(1):68–74

    PubMed  CAS  Google Scholar 

  • Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10(2):183–196

    Article  PubMed  CAS  Google Scholar 

  • Ruediger T, Bolz J (2007) Neurotransmitters and the development of neuronal circuits. Adv Exp Med Biol 621:104–115

    Article  PubMed  Google Scholar 

  • Storto M, de Grazia U, Battaglia G, Felli MP, Maroder M, Gulino A, Ragona G, Nicoletti F, Screpanti I, Frati L, Calogero A (2000) Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J Neuroimmunol 109(2):112–120

    Article  PubMed  CAS  Google Scholar 

  • Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9(1):86–92

    Article  PubMed  CAS  Google Scholar 

  • Ting AT, Dick CJ, Schoon RA, Karnitz LM, Abraham RT, Leibson PJ (1995) Interaction between lck and syk family tyrosine kinases in Fc gamma receptor-initiated activation of natural killer cells. J Biol Chem 270(27):16415–16421

    Article  PubMed  CAS  Google Scholar 

  • Valmu L, Hilden TJ, van Willigen G, Gahmberg CG (1999) Characterization of beta2 (CD18) integrin phosphorylation in phorbol ester-activated T lymphocytes. Biochem J 339(Pt 1):119–125

    Article  PubMed  CAS  Google Scholar 

  • Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A (1993) Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 90(15):7158–7162

    Article  PubMed  CAS  Google Scholar 

  • Wosik K, Ruffini F, Almazan G, Olivier A, Nalbantoglu J, Antel JP (2004) Resistance of human adult oligodendrocytes to AMPA/kainate receptor-mediated glutamate injury. Brain 127(Pt 12):2636–2648

    Article  PubMed  Google Scholar 

  • Yamada H, Yatsushiro S, Ishio S, Hayashi M, Nishi T, Yamamoto A, Futai M, Yamaguchi A, Moriyama Y (1998) Metabotropic glutamate receptors negatively regulate melatonin synthesis in rat pinealocytes. J Neurosci 18(6):2056–2062

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sandipan Ganguly, NICED (National Institute of Cholera And Enteric Diseases), Kolkata, India for the confocal microscopy as well as Mr. Kanchan Karmakar for his help during the study. The authors are highly obliged to Prof. Gopal Kundu, NCCS (National Centre for Cell Science), Pune, India for providing Lck and Syk inhibitors and to Prof Gary Bokoch, Scripps Research Institute, for providing the GST-PBD construct and Rac2 antibody. We are extremely thankful to Dr. S. Nath and Dr. G. P. Srivasatava, Albert David, Ltd., Kolkata, India for the outstanding cooperation received during the project, and Mr. Sanjay Dudhoria and Mr. Santanu Paul for help with the HPLC system. We also most gratefully acknowledge Dr. Amitabha Majumdar, (Weill Medical College of Cornell University, New York, USA) for the Alexa Phalloidin and Dr. Geetanjali Sundaram, University of Calcutta, India, for help with the flow cytometry. Finally, the authors greatly acknowledge the kind cooperation rendered during the work from the members of the Chattopadhyay laboratory as well as various volunteers who donated their blood to sustain the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Chattopadhyay.

Additional information

R. Gupta and S. Palchaudhuri contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2012_1400_MOESM1_ESM.tif

Supplementary material 1. Figure S1 HPLC analysis profile of FITC-glutamate conjugate (a) and only FITC (b). The conjugate was purified by running the reaction mixture in HPLC and collecting only the active fraction (TIFF 915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., Palchaudhuri, S. & Chattopadhyay, D. Glutamate induces neutrophil cell migration by activating class I metabotropic glutamate receptors. Amino Acids 44, 757–767 (2013). https://doi.org/10.1007/s00726-012-1400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1400-1

Keywords

Navigation