Skip to main content
Log in

Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian J, Boisselot-Lefebvres J (1977) Interrelations entre les produits de la reaction de Maillard et le metabolisme calcique. Cahiers Nutr Diet 12:233–234

    CAS  Google Scholar 

  • Anderson JJB, Garner SC (1996) Dietary issues of calcium and phosphorus. In: John JB (ed) Calcium and phosphorus in health and disease. CRC Press, Florida

    Google Scholar 

  • Andrieux C, Saquet E (1984) Effects of Maillard’s reaction products on apparent mineral absorption in different parts of the digestive tract. The role of microflora. Reprod Nutr Develop 23:379–386

    Article  Google Scholar 

  • Delgado-Andrade C (2002) Reacción de Maillard: influencia sobre la biodisponibilidad mineral (Doctoral thesis), Granada, Spain

  • Delgado-Andrade C, Seiquer I, Nieto R, Navarro MP (2004) Effects of heated glucose-lysine and glucose–methionine model systems on mineral solubility. Food Chem 87:329–337

    Article  CAS  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Navarro MP (2005) Comparative effects of glucose–lysine versus glucose–methionine Maillard reaction products consumption: in vitro and in vivo calcium availability. Mol Nutr Food Res 49:679–684

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Navarro MP (2006) Changes in calcium absorption and subsequent tissue distribution induced by Maillard reaction products: in vitro and in vivo assays. J Sci Food Agric 86:271–278

    Article  CAS  Google Scholar 

  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2008) Optimised procedure to analyse Maillard reaction-related fluorescence in cereal-based products. Czech J Food Sci 26:339–346

    CAS  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Haro A, Castellano R, Navarro MP (2010) Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem 122:145–153

    Article  CAS  Google Scholar 

  • Dell’Aquila C (2003) Microbial degradation of heated gluten-glucose systems. Implications for gut health. In: Vegarud G., Morales F. (eds) Melanoidins in food and health, EC Directorate for Research, vol 4, pp 181–183

  • Elmadfa I, Weichselbaum E (2005) Energy and nutrient intake in the European Union. European Nutrition and Health Report 2004. Forum Nutr 58:19–46

    Google Scholar 

  • Fairweather-Tait SJ, Portwood DE, Symss LL, Eagle SJ, Minski MJ (1989) Iron and zinc absorption in human subjects from a mixed meal of extruded and nonextruded wheat bran and flour. Am J Clin Nutr 49(1):151–155

    PubMed  CAS  Google Scholar 

  • Fernández San Juan PM (2006) Dietary habits and nutritional status of school aged children in Spain. Nutr Hosp 21(3):374–378

    PubMed  Google Scholar 

  • Forwood MR, Vashishth D (2009) Translational aspects of bone quality–vertebral fractures, cortical shell, microdamage and glycation: a tribute to Pierre D. Delmas. Osteoporos Int 20(3):247–253

    Article  Google Scholar 

  • Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113(3):154–161

    Article  PubMed  CAS  Google Scholar 

  • Furniss DE, Vuichoud J, Finot PA, Hurrell RF (1989) The effect of Maillard reaction products on zinc metabolism in the rat. Brit J Nutr 62:739–749

    Article  PubMed  CAS  Google Scholar 

  • Gregor JL, Emery SM (1987) Mineral metabolism and bone strength of rats fed coffee and decaffeinated coffee. J Agric Food Chem 35:551–556

    Article  Google Scholar 

  • Heaney RP (2000) Calcium, dairy products and osteoporosis. J Am Coll Nutr 19(2):83–99

    Google Scholar 

  • Hein GE (2006) Glycation endproducts in osteoporosis—is there a pathophysiologic importance? Clin Chim Acta 371:32–36

    Article  PubMed  CAS  Google Scholar 

  • Homma S, Fujimaki M (1981) Growth response of rats fed a diet containing nondialyzable melanoidins. Prog Food Nutr Sci 5:209

    PubMed  CAS  Google Scholar 

  • Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11(7):931–937

    Article  PubMed  CAS  Google Scholar 

  • Kimiagar M, Lee TC, Chichester CO (1980) Long-term feeding effects of browned egg albumin to rats. J Agric Food Chem 28:150–155

    Article  PubMed  CAS  Google Scholar 

  • Kutchai HC (1998) Gastrointestinal secretion. In: Berne RM, Levy MN, Koeppen BM, Stanton BA (eds) Physiology, 4th edn. Mosby Inc., St. Louis, pp 617–646

    Google Scholar 

  • Lee TC, Pintauro SJ, Chichester CO (1982) Nutritional and toxicological effects of nonenzymatic Maillard browning. Diabetes 31:37–46

    CAS  Google Scholar 

  • Mesias M, Seiquer I, Navarro MP (2009) Influence of diets rich in Maillard reaction products on calcium bioavailability. Assays in male adolescents and in Caco-2 cells. J Agric Food Chem 57:9532–9538

    Article  PubMed  CAS  Google Scholar 

  • Navarro MP (2003) Impact of Maillard reaction products on mineral bioavailability. In: Vaquero MP, García-Arias T, Carbajal A, Sánchez-Muniz FJ (eds) Bioavailability of micronutrients and minor dietary compounds. Metabolic and technological aspects, research signpost. Kerala, India, pp 133–145

    Google Scholar 

  • O’Brien J, Morrissey PA (1989) Nutritional and Toxicological aspects of Maillard Browning reaction in foods. Crit Rev Food Sci Nutr 28:211–248

    Article  PubMed  Google Scholar 

  • O’Brien J, Walker R (1988) Toxicological effects of dietary Maillard reaction products in the rat. Food Chem Toxicol 26(9):775–783

    Article  PubMed  Google Scholar 

  • O’Brien J, Morrissey PA, Flynn A (1994) Alterations of mineral metabolism and secondary pathology in rats fed Maillard reaction products. In: Labuza TP, Reineccius GA, Monnier VM, O’Brien J, Baynes JW (eds) Maillard Reactions in chemistry, food and health. Royal Society of Chemistry, Cambridge, pp 393–401

    Google Scholar 

  • O′Brien J, Morrissey PA, Flynn A (1986) The effect of Maillard reaction products on mineral homeostasis in the rat. In: Proceedings of EURO-FOOD TOX II. Institute of Toxicology, Swiss Federal Institute of Technology, Zurich

  • Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  • Rendleman JA (1987) Complexation of calcium by the melanoidin and its role in determining bioavailability. J Food Sci 52:1699–1705

    Article  CAS  Google Scholar 

  • Rèrat A, Calmes R, Vaissade P, Finot PA (2002) Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig, significance for man. Eur J Nutr 41:1–11

    PubMed  Google Scholar 

  • Saito M (2009) Biochemical markers of bone turnover. New aspect. Bone collagen metabolism: new biological markers for estimation of bone quality. Clin Calcium 19(8):1110–1117

    PubMed  CAS  Google Scholar 

  • Saito M, Fujii K, Soshi S, Tanaka T (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995

    Article  PubMed  CAS  Google Scholar 

  • Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. In Maillard reaction: recent advances in food and biomedical sciences, Schleicher E, Somoza V, Shieberle P. Ann NY Acad Sci 1126:166–172

    Article  PubMed  CAS  Google Scholar 

  • Sarriá B, López-Fandino R, Vaquero MP (2001) Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability? Nutrition 17:326–331

    Article  PubMed  Google Scholar 

  • Sebeková K, Hofmann T, Boor P, KJr Sebeková, Ulicná O, Erbersdobler HF, Baynes JW, Thorpe SR, Heidland A, Somoza V (2005) Renal effects of oral Maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann NY Acad Sci 1043:482–491

    Article  PubMed  Google Scholar 

  • Seiquer I, Aspe T, Vaquero P, Navarro P (2001) Effects of heat treatment of casein in the presence of reducing sugars on calcium bioavailability: in vitro and in vivo assays. J Agric Food Chem 49:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Seiquer I, López-Frías M, Muñoz-Hoyos A, Galdó G, Delgado-Andrade C, Mesías M, Navarro MP (2006) Dietary calcium utilization among a group of Spanish boys aged 11–14 years on their usual diets. J Physiol Biochem 62(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Seiquer I, Delgado-Andrade C, Haro A, Navarro MP (2010) Assessing the effects of severe heat treatment of milk on calcium bioavailability: in vitro and in vivo studies. J Dairy Sci 93:5635–5643

    Article  PubMed  CAS  Google Scholar 

  • Somoza V (2005) Five years of research on health risks and benefits of Maillard reaction products: An update. Mol Nutr Food Res 49:663–672

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Lee TC, Chichester CO (1975) Nutritional consequences of the Maillard reaction. The absorption of fructose-l-tryptophan in the large intestine of the rat. J Nutr 105:989

    PubMed  CAS  Google Scholar 

  • Tuohy KM, Hinton DJS, Davies SJ, Crabbe JC, Gibson GR, Ames JM (2006) Metabolism of Maillard reaction products by the human gut microbiota—implications for health. Mol Nutr Food Res 50:847–857

    Article  PubMed  CAS  Google Scholar 

  • van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  PubMed  Google Scholar 

  • Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML (2006) Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Vlassara H (1996) Advanced glycosylation in nephropathy of diabetes and aging. Adv Nephrol 25:303–307

    CAS  Google Scholar 

  • Westerterp-Plantega MS (2004) Effects of energy, density of daily food intake on long term energy intake. Physiol Behav 81:765–771

    Article  Google Scholar 

  • Yamamoto T, Ozono K, Miyauchi A, Kasayama S, Kojima Y, Shima M, Okada S (2001) Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am J Kidney Dis 38(4):161–164

    Article  Google Scholar 

  • Yuan YV, Kitts DD (1994) Calcium absorption and bone utilization in spontaneously hypertensive rats fed on native and heat-damaged casein and soya-bean protein. Br J Nutr 71:583–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a project of the Spanish Ministry of Science and Innovation. The authors thank Grupo Siro, a Spanish manufacturer of cereal-derived food products, for supplying the bread crust samples.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Delgado-Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roncero-Ramos, I., Delgado-Andrade, C., Haro, A. et al. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats. Amino Acids 44, 1409–1418 (2013). https://doi.org/10.1007/s00726-011-1160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1160-3

Keywords

Navigation