Skip to main content
Log in

Exercise-induced oxidative stress: the effects of β-alanine supplementation in women

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of β-alanine supplementation on markers of oxidative stress. Twenty-four women (age: 21.7 ± 2.1 years; VO2max: 2.6 ± 0.3 l min−1) were randomly assigned, in a double-blind fashion, to a β-alanine (BA, 2 × 800 mg tablets, 3× daily; CarnoSyn®; n = 13) or placebo (PL, 2 × 800 mg maltodextrin tablets, 3× daily; n = 11) group. A graded oxygen consumption test (VO2max) was performed to evaluate VO2max, time to exhaustion, ventilatory threshold and establish peak velocity (PV). A 40-min treadmill run was used to induce oxidative stress. Total antioxidant capacity, superoxide dismutase, 8-isoprostane (8ISO) and reduced glutathione were measured. Heart rate and ratings of perceived exertion were recorded during the 40 min run. Separate three- [4 × 2 × 2; acute (base vs. IP vs. 2 vs. 4 h) × chronic (pre- vs. post-) × treatment (BA vs. PL)] and two- [2 × 2; time (pre-supplement vs. post-supplement) × treatment (BA vs. PL)] way ANOVAs were used for analyses. There was a significant increase in VO2max (p = 0.009), independent of treatment, with no significant changes in TTE (p = 0.074) or VT (p = 0.344). Ratings of perceived exertion values were significantly improved from pre- to post-supplementation for the BA group only at 40 min (p = 0.02). The ANOVA model demonstrated no significant treatment effects on oxidative stress. The chronic effects of BA supplementation demonstrated little antioxidant potential, in women, and little influence on aerobic performance assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry 65(7):757–765

    PubMed  CAS  Google Scholar 

  • Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25(2):218–224

    PubMed  CAS  Google Scholar 

  • Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr (2010) Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc 42(6):1162–1173. doi:10.1249/MSS.0b013e3181

    PubMed  CAS  Google Scholar 

  • Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106(3):837–842

    Article  PubMed  CAS  Google Scholar 

  • Bate-Smith EC (1938) The buffering of muscle in rigor: protein, phosphate and carnosine. J Physiol 92:336–343

    Google Scholar 

  • Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57

    PubMed  Google Scholar 

  • Bloomer RJ, Falvo MJ, Fry AC, Schilling BK, Smith WA, Moore CA (2006a) Oxidative stress response in trained men following repeated squats or sprints. Med Sci Sports Exerc 38(8):1436–1442

    Article  PubMed  CAS  Google Scholar 

  • Bloomer RJ, Goldfarb AH, McKenzie MJ (2006b) Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc 38(6):1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzym Regul 30:175–194

    Article  CAS  Google Scholar 

  • Boldyrev AA, Dupin AM, Bunin A, Babizhaev MA, Severin SE (1987) The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem Int 15(6):1105–1113

    PubMed  CAS  Google Scholar 

  • Boldyrev A, Leotsakos A, Quinn P (1992) The effect of membrane stabilizing agents on Ca-pump of the sarcoplasmic reticulum. Ukr Biokhim Zh 64(6):54–58

    PubMed  CAS  Google Scholar 

  • Boldyrev AA, Stvolinsky SL, Tyulina OV, Koshelev VB, Hori N, Carpenter DO (1997) Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell Mol Neurobiol 17(2):259–271

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev A, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94(2):571–577

    Article  PubMed  CAS  Google Scholar 

  • Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72(2 Suppl):637S–646S

    PubMed  CAS  Google Scholar 

  • Cooper CE, Vollaard NB, Choueiri T, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30(2):280–285

    Article  PubMed  CAS  Google Scholar 

  • Craan AG, Lemieux G, Vinay P, Gougoux A (1982) The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies. Kidney Int 22(2):103–111

    Article  PubMed  CAS  Google Scholar 

  • Cullinane EM, Sady SP, Vadeboncoeur L, Burke M, Thompson PD (1986) Cardiac size and VO2max do not decrease after short-term exercise cessation. Med Sci Sports Exerc 18(4):420–424

    PubMed  CAS  Google Scholar 

  • Decker EA, Crum AD, Calvert JT (1992) Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J Agric Food Chem 40:756–759

    Article  CAS  Google Scholar 

  • Decker EA, Ivanov V, Zhu BZ, Frei B (2001) Inhibition of low-density lipoprotein oxidation by carnosine histidine. J Agric Food Chem 49(1):511–516

    Article  PubMed  CAS  Google Scholar 

  • Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103(5):1736–1743

    Article  PubMed  CAS  Google Scholar 

  • Derave W, Everaert I, Beeckman S, Baguet A (2010) Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 40(3):247–263. doi:10.2165/11530310-000000000-00000

    Article  PubMed  Google Scholar 

  • Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10(1–2):125–140

    Article  PubMed  CAS  Google Scholar 

  • Dupin AM, Stvolinskii SL (1986) Changes in carnosine levels in muscles working in different regimens of stimulation. Biokhimiia (Moscow, Russia) 51 (1):160–164

  • Egorov S, Kurella EG, Boldyrev AA, Krasnovsky AA Jr (1997) Quenching of singlet molecular oxygen by carnosine and related antioxidants monitoring 1270-nm phosphorescence in aqueous media. Biochem Mol Biol Int 41(4):687–694

    PubMed  CAS  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10(17):1723–1740

    Article  PubMed  CAS  Google Scholar 

  • Fatouros IG, Chatzinikolaou A, Douroudos II, Nikolaidis MG, Kyparos A, Margonis K, Michailidis Y, Vantarakis A, Taxildaris K, Katrabasas I, Mandalidis D, Kouretas D, Jamurtas AZ (2010) Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J Strength Cond Res 24(12):3278–3286. doi:10.1519/JSC.0b013e3181b60444

    Article  PubMed  Google Scholar 

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports medicine (Auckland, NZ) 36 (4):327–358

    Google Scholar 

  • Fitts RH, Holloszy JO (1976) Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol 231(2):430–433

    PubMed  CAS  Google Scholar 

  • Gopal I (1997) The effect of gender on exercise-induced oxidative stress (disseration). University of North Carolina, Greensboro

    Google Scholar 

  • Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31(4):261–272

    Article  PubMed  CAS  Google Scholar 

  • Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids 30(3):279–289

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino acids 32(2):225–233

    Article  PubMed  CAS  Google Scholar 

  • Hoffman J, Ratamess N, Faigenbaum A, Ross R, Kang J, Stout J, Wise JA (2007) Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 28(1):31–35

    Article  Google Scholar 

  • Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, Wise JA (2008) Beta-alanine and the hormonal response to exercise. Int J Sports Med 29(12):952–958

    Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. doi:10.1249/MSS.0b013e31818cb278

    Article  PubMed  Google Scholar 

  • Houmard JA, Hortobagyi T, Johns RA, Bruno NJ, Nute CC, Shinebarger MH, Welborn JW (1992) Effect of short-term training cessation on performance measures in distance runners. Int J Sports Med 13(8):572–576. doi:10.1055/s-2007-1024567

    Article  PubMed  CAS  Google Scholar 

  • Howell D (2007) Statistical methods for psychology. Wadsworth, Belmont

    Google Scholar 

  • Ji LL (1999) Antioxidants and oxidative stress in exercise. In: Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 222 (3):283–292

  • Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA (2008) The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 34(4):547–554

    Article  PubMed  CAS  Google Scholar 

  • Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA (2009) The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol 106(1):131–138

    Google Scholar 

  • Kerksick C, Taylor Lt, Harvey A, Willoughby D (2008) Gender-related differences in muscle injury, oxidative stress, and apoptosis. Med Sci Sports Exerc 40(10):1772–1780

    Article  PubMed  CAS  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85(9):3175–3179

    Article  PubMed  CAS  Google Scholar 

  • Kohen R, Vellaichamy E, Hrbac J, Gati I, Tirosh O (2000) Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 28(6):871–879 (S0891-5849(00)00191-X[pii])

    Article  PubMed  CAS  Google Scholar 

  • Lovlin R, Cottle W, Pyke I, Kavanagh M, Belcastro AN (1987) Are indices of free radical damage related to exercise intensity. Eur J Appl Physiol 56(3):313–316

    Article  CAS  Google Scholar 

  • Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA (1993) Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol 75(4):1444–1451

    PubMed  CAS  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2006) Exercise physiology: energy, nutrition, and human performance, 6th edn. Williams & Wilkins, Lippincott

    Google Scholar 

  • Michailidis Y, Jamurtas AZ, Nikolaidis MG, Fatouros IG, Koutedakis Y, Papassotiriou I, Kouretas D (2007) Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc 39(7):1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Moller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 102(1):17–36 (0009279796037295[pii])

    Article  PubMed  CAS  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D (2008) The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med (Auckland, NZ) 38(7):579–606. (3875 [pii])

    Google Scholar 

  • Nohl H, Kozlov AV, Gille L, Staniek K (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31(Pt 6):1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Orr GW, Green HJ, Hughson RL, Bennett GW (1982) A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol 52(5):1349–1352

    PubMed  CAS  Google Scholar 

  • Packer L (1997) Oxidants, antioxidant nutrients and the athlete. J Sports Sci 15(3):353–363

    Article  PubMed  CAS  Google Scholar 

  • Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK (1985) Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 58(1):14–17

    PubMed  CAS  Google Scholar 

  • Peake J, Wilson G, Hordern M, Suzuki K, Yamaya K, Nosaka K, Mackinnon L, Coombes JS (2004) Changes in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. J Appl Physiol 97(2):612–618

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13(5):379–444

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1995) Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 79(1):129–135

    PubMed  CAS  Google Scholar 

  • Reid MB (2001a) Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90(2):724–731

    Article  PubMed  CAS  Google Scholar 

  • Reid MB (2001b) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33(3):371–376

    Article  PubMed  CAS  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516

    Article  PubMed  CAS  Google Scholar 

  • Sale C, Saunders B, Harris RC (2010) Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39(2):321–333. doi:10.1007/s00726-009-0443-4

    Article  PubMed  CAS  Google Scholar 

  • Salim-Hanna M, Lissi E, Videla LA (1991) Free radical scavenging activity of carnosine. Free Radic Res Commun 14(4):263–270

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283(43):29292–29300. doi:10.1074/jbc.M801019200

    Article  PubMed  CAS  Google Scholar 

  • Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79(3):675–686

    PubMed  CAS  Google Scholar 

  • Severin SE, Boldyrev AA (1991) Effects of carnosine, a specific component of striated muscle, on muscle and other tissues. Biomedical Sci 2(1):91–94

    CAS  Google Scholar 

  • Sjodin B, Hellsten Westing Y, Apple FS (1990) Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (Auckland, NZ) 10(4):236–254

    Google Scholar 

  • Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fukuda DH, Beck TW, Cramer JT, Stout JR (2009) Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr 6:5

    Article  PubMed  Google Scholar 

  • Soller BR, Yang Y, Lee SM, Wilson C, Hagan RD (2008) Noninvasive determination of exercise-induced hydrogen ion threshold through direct optical measurement. J Appl Physiol 104(3):837–844. doi:10.1152/japplphysiol.00849.2007

    Article  PubMed  CAS  Google Scholar 

  • Stout JR, Cramer JT, Mielke M, O’Kroy J, Torok DJ, Zoeller RF (2006) Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res/Natl Strength Cond Assoc 20(4):928–931

    Google Scholar 

  • Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O’Kroy J (2007) Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32(3):381–386

    Article  PubMed  CAS  Google Scholar 

  • Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P (2009) Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 41(4):898–903

    Article  PubMed  Google Scholar 

  • Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports medicine (Auckland, NZ) 35(12):1045–1062

    Google Scholar 

  • Walter AA, Smith AE, Kendall KL, Stout JR, Cramer JT (2010) Six weeks of high-intensity interval training with and without beta-alanine supplementation for improving cardiovascular fitness in women. J Strength Condition Res/Natl Strength Condition Assoc 24(5):1199–1207. doi:10.1519/JSC.0b013e3181d82f8b

    Google Scholar 

  • Zoeller RF, Stout JR, O’Kroy JA, Torok DJ, Mielke M (2007) Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 33(3):505–510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The CarnoSyn® and placebo products used in this study were graciously donated by Natural Alternatives Inc. Additional monetary support for blood analyses was donated from Vital Pharmaceuticals Inc. We would also like to acknowledge all of the scientists involved with the International Carnosine Congress, for further expanding the carnosine/β-alanine knowledge base.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.E., Stout, J.R., Kendall, K.L. et al. Exercise-induced oxidative stress: the effects of β-alanine supplementation in women. Amino Acids 43, 77–90 (2012). https://doi.org/10.1007/s00726-011-1158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1158-x

Keywords

Navigation