Skip to main content
Log in

Inducible expression of antizyme 1 in prostate cancer cell lines after lentivirus mediated gene transfer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The prostate has the highest level of polyamines among all tissues, and it is the only tissue in which polyamines are purposely synthesized for export. It has been suggested that the high local polyamine concentrations suppress cell growth of primary prostatic carcinomas and that this growth control is lost when cancer cells metastasize. It has also been shown that the sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cell lines. In this study, we evaluated the sensitivity of poorly metastatic (LNCaP) and highly metastatic (DU145) prostate cancer cell lines to conditional antizyme 1 over-expression. Antizyme 1 induction resulted in a marked loss of ODC activity and polyamine uptake in both cell lines. However, the proliferation of LNCaP cells was repressed by antizyme 1 induction, whereas the proliferation of DU 145 cells was not affected. Neither cell line showed any reduction in polyamine pools after manipulation nor did polyamine addition into the medium save the LNCaP cells from the growth retardation. The growth inhibition of LNCaP cells was accompanied by accumulation of cells in the G1 phase and depletion of cyclin E1 protein. These results confirm that different prostate cancer cell lines show diverse sensitivities to antizyme 1 which may not be directly polyamine related. The high gene transfer capacity of the used lentiviral vector makes the present approach a useful tool to study the therapeutic potential of antizyme 1 both in cell cultures and experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AZ:

Antizyme

AZIn:

Antizyme inhibitor

DFMO:

Difluoromethylornithine

LTR:

Long terminal repeat

MOI:

Multiplicity of infection

ODC:

Ornithine decarboxylase

SIN:

Self inactivating

References

  • Alm K, Oredsson S (2009) Cells and polyamines do it cyclically. Essays Biochem 46:63–76

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2007) Current protocols in molecular biology. Wiley, USA

    Google Scholar 

  • Crozat A, Palvimo J, Julkunen M, Janne O (1992) Comparison of androgen regulation of ornithine decarboxylase and S- adenosylmethionine decarboxylase gene expression in rodent kidney and accessory sex organs. Endocrinology 130:1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Devlin HL, Mudryj M (2009) Progression of prostate cancer: multiple pathways to androgen independence. Cancer Lett 274:177–186

    Article  PubMed  CAS  Google Scholar 

  • Feith DJ, Shantz LM, Pegg AE (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61:6073–6081

    PubMed  CAS  Google Scholar 

  • Gupta S, Ahmad N, Marengo SR, MacLennan GT, Greenberg NM, Mukhtar H (2000) Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res 60:5125–5133

    PubMed  CAS  Google Scholar 

  • Hyvönen T, Keinanen TA, Khomutov AR, Khomutov RM, Eloranta TO (1992) Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J Chromatogr 574:17–21

    Article  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Sato Y, Asada M, Takagi M, Tsujimoto A, Inaba T, Yamada T, Sakamoto S, Yata J, Shimogori T, Igarashi K, Mizutani S (1999) Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene 18:165–172

    Article  PubMed  CAS  Google Scholar 

  • Janne J, Williams-Ashman HG (1971) On the purification of l-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme. J Biol Chem 246:1725–1732

    PubMed  CAS  Google Scholar 

  • Kahana C (2007) Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 33:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488

    Article  PubMed  CAS  Google Scholar 

  • Kankare K, Uusi-Oukari M, Janne OA (1997) Structure, organization and expression of the mouse ornithine decarboxylase antizyme gene. Biochem J 324:807–813

    PubMed  CAS  Google Scholar 

  • Koike C, Chao DT, Zetter BR (1999) Sensitivity to polyamine-induced growth arrest correlates with antizyme induction in prostate carcinoma cells. Cancer Res 59:6109–6112

    PubMed  CAS  Google Scholar 

  • Kramer DL, Vujcic S, Diegelman P, Alderfer J, Miller JT, Black JD, Bergeron RJ, Porter CW (1999) Polyamine analogue induction of the p53–p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Cancer Res 15:1278–1286

    Google Scholar 

  • Lee JT, Lehman BD, Terrian DM et al (2008) Targeting prostate cancer based on signal transduction and cell cycle pathways. Cell Cycle 7:1745–1762

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Contreras AJ, Ramos-Molina B, Cremades A, Penafiel R (2010) Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 38:603–611

    Article  PubMed  CAS  Google Scholar 

  • Mi Z, Kramer D, Miller J, Bergeron R, Bernacki R, Porter C (1998) Human prostatic carcinoma cell lines display altered regulation of polyamine transport in response to polyamine analogs and inhibitors. Prostate 34:51–60

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed  CAS  Google Scholar 

  • Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M, Finley D, Zetter BR (2004) Antizyme targets cyclin D1 for degradation: a novel mechanism for cell growth repression. J Biol Chem 23:23

    Google Scholar 

  • Prather RS, Boquest AC, Day BN (1999) Cell cycle analysis of cultured porcine mammary cells. Cloning 1:17–24

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433

    PubMed  CAS  Google Scholar 

  • Schipper RG, Romijn JC, Cuijpers VM, Verhofstad AA (2003) Polyamines and prostatic cancer. Biochem Soc Trans 31:375–380

    Article  PubMed  CAS  Google Scholar 

  • Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223

    Article  PubMed  CAS  Google Scholar 

  • Shin K-J, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang J-I, Rebres R, Roach T, Seaman W, Simon MI, Fraser IDC (2006) A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. PNAS 103:13759–13764

    Article  PubMed  CAS  Google Scholar 

  • Simoneau AR, Gerner EW, Nagle R, Ziogas A, Fujikawa-Brooks S, Yerushalmi H, Ahlering TE, Lieberman R, McLaren CE, Anton-Culver H, Meyskens FL Jr (2008) The effect of difluoromethylornithine on decreasing prostate size and polyamines in men: results of a year-long phase IIb randomized placebo-controlled chemoprevention trial. Cancer Epidemiol Biomarkers Prev 17:292–299

    Article  PubMed  CAS  Google Scholar 

  • Sinn PL, Sauter SL, McCray PB Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 12:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Young L, Salomon R, Au W, Allan C, Russell P, Dong Q (2006) Ornithine decarboxylase (ODC) expression pattern in human prostate tissues and ODC transgenic mice. J Histochem Cytochem 54:223–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Olli Jänne for providing the mutated mouse AZ1 cDNA and the rabbit polyclonal anti-AZ1 antibody. We also thank Ms. Arja Korhonen, Anne Karppinen and Tuula Reponen for their skillful technical assistance. This work was financially supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Pietilä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietilä, M., Lampinen, A., Pellinen, R. et al. Inducible expression of antizyme 1 in prostate cancer cell lines after lentivirus mediated gene transfer. Amino Acids 42, 559–564 (2012). https://doi.org/10.1007/s00726-011-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1033-9

Keywords

Navigation