Skip to main content
Log in

Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2–5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  • Aubrey AD, Cleaves HJ, Bada JL (2009) An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig Life Evol Biosph 39:109–126

    Article  PubMed  Google Scholar 

  • Barker CC (1953) The dehydration and racemisation of N-acyl-L-aspartic acids by acetic anhydride. J Chem Soc 453–456

  • Benoiton NL (2006) Chemistry of peptide synthesis. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Benoiton NL, Chen FMF (1981) 2-Alkyl-5(4H)-oxazolones from N-alkoxycarbonylamino acids and their implication in carbodiimide-mediated reactions in peptide synthesis. Can J Chem 59:384–389

    Article  CAS  Google Scholar 

  • Benoiton NL, Lee YC, Steinauer R, Chen FMF (1992) Studies on sensitivity to racemization of activated residues in couplings of N-benzyloxycarbonyldipeptides. Int J Pept Protein Res 40:559–566

    Article  PubMed  CAS  Google Scholar 

  • Biron JP, Pascal R (2004) Amino acid N-Carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution. J Am Chem Soc 126:9198–9199

    Article  PubMed  CAS  Google Scholar 

  • Boiteau L, Pascal R (2011) Energy sources, self-organization, and the origin of life. Orig Life Evol Biosph 41:23–33

    Article  PubMed  CAS  Google Scholar 

  • Brack A (1982) Aqueous polymerization of L-amino acid active esters in bicarbonate solution via Leuch anhydrides. Biosystems 15:201–207

    Article  PubMed  CAS  Google Scholar 

  • Brack A (2007) From interstellar amino acids to prebiotic catalytic peptides: a review. Chem Biodivers 4:665–679

    Article  PubMed  CAS  Google Scholar 

  • Bujdák J, Rode BM (1999) Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst. Orig Life Evol Biosph 29:451–461

    Article  PubMed  Google Scholar 

  • Cavadore JC, Previero A (1969) Polycondensation of free amino acids in aqueous solution with a soluble carbodiimide. Bull Soc Chim Biol 51:1245–1253

    PubMed  CAS  Google Scholar 

  • Collet H, Bied C, Mion L, Taillades J, Commeyras A (1996) A new simple and quantitative synthesis of α-aminoacid-N-carboxyanhydrides (oxazolidines-2, 5-dione). Tetrahedron Lett 37:9043–9046

    Article  CAS  Google Scholar 

  • Commeyras A, Boiteau L, Vandenabeele-Trambouze O, Selsis F (2005) Peptide emergence, evolution and selection on the primitive Earth. I. Convergent formation of N-carbamoyl amino acids rather than free α-amino acids? In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology-part II: from prebiotic chemistry to the origins of life on Earth. Springer, Berlin, pp 531–554

    Google Scholar 

  • Commeyras A, Taillades J, Collet H, Boiteau L, Vandenabeeletrambouze O, Pascal R, Rousset A, Garrel L, Rossi JC, Biron JP, Lagrille O, Plasson R, Souaid E, Danger G, Selsis F, Dobrijevic M, Martin H (2004) Dynamic co-evolution of peptides and chemical energetics, a gateway to the emergence of homochirality and the catalytic activity of peptides. Orig Life Evol Biosph 34:35–55

    Article  PubMed  CAS  Google Scholar 

  • Crisma M, Moretto A, Formaggio F, Kaptein B, Broxterman Q, Toniolo C (2004) Meteoritic Cα-methylated α-amino acids and the homochirality of life: searching for a link. Angew Chem Int Ed 43:6695–6699

    Article  CAS  Google Scholar 

  • Cronin JR, Gandy WE, Pizzarello S (1980) Amino acids of the murchison meteorite. In: Hare PE, Hoering TC, King K Jr (eds) Biogeochemistry of amino acids. Wiley, New York, pp 153–168

    Google Scholar 

  • Cronin JR, Pizzarello S (1983) Amino acids in meteorites. Adv Space Res 3(9):5–18

    Article  PubMed  CAS  Google Scholar 

  • Danger G, Boiteau L, Cottet H, Pascal R (2006) The peptide formation mediated by cyanate revisited. N-carboxyanhydrides as accessible intermediates in the decomposition of N-carbamoylaminoacids. J Am Chem Soc 128:7412–7413

    Google Scholar 

  • Danger G, Plasson R, Pascal R (2010) An experimental investigation of the evolution of chirality in a potential dynamic peptide system: N-terminal epimerization and degradation into diketopiperazine. Astrobiology. 10:651–662

    Google Scholar 

  • Duvernay F, Chiavassa T, Borget F, Aycard JP (2004) Experimental study of water-ice catalyzed thermal isomerization of cyanamide into carbodiimide: implication for prebiotic chemistry. J Am Chem Soc 126:7772–7773

    Article  PubMed  CAS  Google Scholar 

  • Hagan WJ (2010) Uracil-catalyzed synthesis of acetyl phosphate: a photochemical driver for protometabolism. ChemBioChem 11:383–387

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T, Flynn GL, Shah AC (1967) Reversible formation and hydrolysis of phthaloyl and succinyl monophosphates in aqueous solution. J Am Chem Soc 89:616–622

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim IT, Williams A (1980) Concerted general acid catalysis in the reaction of acetate ion with water soluble carbodiimide. J Chem Soc Chem Commun 25–27

  • Imai EI, Honda H, Hatori K, Matsuno K (1999) Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Lipmann F (1960) Chemical and enzymatic synthesis of carbamyl phosphate. Proc Natl Acad Sci USA 46:1194–1205

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Nishi T, Sakiyama T (2005) Consecutive elongation of alanine oligopeptides at the second time range under hydrothermal conditions using a microflow reactor system. J Am Chem Soc 127:522–523

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Takeya H, Kushibe T (2009) Effect of condensation agents and minerals for oligopeptide formation under mild and hydrothermal conditions in related to chemical evolution of proteins. Adv Space Res 44:267–275

    Article  CAS  Google Scholar 

  • Kirby AJ (1980) Effective molarities for intramolecular reactions. Adv Phys Org Chem 17:183–278

    Article  CAS  Google Scholar 

  • Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  • Lagrille O, Danger G, Boiteau L et al (2009) Process improvement in amino acid N-carboxyanhydride synthesis by N-carbamoyl amino acid nitrosation. Amino Acids. 36:341–347

    Google Scholar 

  • Lambert JF (2008) Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig Life Evol Biosph 38:211–242

    Article  PubMed  CAS  Google Scholar 

  • Leman L, Orgel L, Ghadiri MR (2004) Carbonyl sulfide–mediated prebiotic formation of peptides. Science 306:283–286

    Article  PubMed  CAS  Google Scholar 

  • Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128:20–21

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yin Y, Zhao Y (1992) Phosphoryl group participation leads to peptide formation from N-phosphorylamino acids. Int J Pept Protein Res 39:375–381

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann R (1972) Formation of urea and guanidine by irradiation of ammonium cyanide. J Mol Evol 1:263–269

    Article  PubMed  CAS  Google Scholar 

  • Maurel MC, Orgel L (2000) Oligomerization of α-thioglutamic acid. Orig Life Evol Biosph 30:423–430

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Parris M (1964) Synthesis of pyrophosphate under primitive Earth conditions. Nature 204:1248–1250

    Article  CAS  Google Scholar 

  • Miyazawa T, Donkai T, Yamada T, Kuwata S (1989) Racemization suppression by copper (II) chloride in peptide synthesis by the mixed anhydride and related methods. Chem Lett 2125–2128

  • Mullen LB, Sutherland JD (2007) Simultaneous nucleotide activation and synthesis of amino acid amides by a potentially prebiotic multi-component reaction. Angew Chem Int Ed 46:8063–8066

    Article  CAS  Google Scholar 

  • Orgel LE (2002) Is cyanoacetylene prebiotic? Orig Life Evol Biosph 32:279–281

    Article  PubMed  CAS  Google Scholar 

  • Page MI, Jencks WP (1971) Entropic contribution to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci USA 68:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Pascal R (2003) Catalysis through induced intramolecularity: what can be learned by mimicking enzymes with carbonyl compounds that covalently bind substrates? Eur J Org Chem 1813–1824

  • Pascal R, Boiteau L, Commeyras A (2005) From the prebiotic synthesis of α-amino acids towards a primitive translation apparatus for the synthesis of peptides. Top Curr Chem 259:69–122

    Article  CAS  Google Scholar 

  • Pizzarello S, Huang YS (2002) Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids. Meteorit Planet Sci 37:687–696

    Article  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode B (2005) Prebiotic chemistry the amino acid and peptide world. Curr Org Chem 9:1107–1114

    Article  CAS  Google Scholar 

  • Plasson R, Bersini H, Commeyras A (2004) Recycling Frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci USA 101:16733–16738

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan D, Singh GP (1990) The demonstration of selective peptide bond formation in clear aqueous solutions. J Chem Soc Chem Commun 142–143

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    Article  PubMed  CAS  Google Scholar 

  • Rode BM, Son HL, Suwannachot Y, Bujdak J (1999) The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive Earth conditions. Orig Life Evol Biosph 29:273–286

    Article  PubMed  CAS  Google Scholar 

  • Stark GR (1965a) Reactions of Cyanate with functional groups of proteins. III. Reactions with amino and carboxyl groups. Biochemistry 4:1030–1036

    Article  PubMed  CAS  Google Scholar 

  • Stark GR (1965b) Reactions of cyanate with functional groups of proteins. IV. Inertness of aliphatic hydroxyl groups. Formation of carbamyl- and acylhydantoins. Biochemistry 4:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Taillades J, Boiteau L, Beuzelin I, Lagrille O, Biron JP, Vayaboury W, Vandenabeele-Trambouze O, Giani O, Commeyras A (2001) A pH-dependent cyanate reactivity model: application to preparative N-carbamoylation of amino acids. J Chem Soc Perkin 1 1247–1254

    Google Scholar 

  • Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Article  PubMed  CAS  Google Scholar 

  • van den Nest W, Yuval S, Albericio F (2001) Cu(OBt)2 and Cu(OAt)2, copper-based racemization suppressors ready for use in fully automated solid-phase peptide synthesis. J Pept Sci 7:115–120

    Article  PubMed  Google Scholar 

  • Vogels GD, Uffink L, Van der Drift C (1970) Cyanate decomposition catalyzed by certain divalent anions. Recl Trav Chim Pays-Bas 89:500–508

    Article  CAS  Google Scholar 

  • Williams A, Ibrahim IT (1981) Carbodiimide chemistry: recent advances. Chem Rev 81:589–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European research action COST CM0703 “Systems Chemistry” and the CNRS interdisciplinary program “Environnements Planétaires et Origines de la Vie” (EPOV).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Grégoire Danger or Robert Pascal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danger, G., Charlot, S., Boiteau, L. et al. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids. Amino Acids 42, 2331–2341 (2012). https://doi.org/10.1007/s00726-011-0975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0975-2

Keywords

Navigation