Skip to main content

Advertisement

Log in

Toward the rational design of molecular rotors ion sensors based on α,γ-cyclic peptide dimers

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A dimer-forming self-assembling cyclic hexapeptide with a control register and a large association constant in water is described. The self-assembly process is followed by pyrene-excimer emission and the main diastereomeric dimer present in solution is switched by controlled addition of divalent cations (e.g., Ca, Mg) or oxalic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3

Similar content being viewed by others

Abbreviations

Acp:

3-Aminocyclopentanecarboxylic Acid

CPs:

Cyclic peptides

α,γ-D:

Dimer of a α,γ-cyclic peptide

DIEA:

Diisopropylethylamine

4-DPPBA:

4-(Diphenylphosphino)benzoic Acid

ext-TTF:

2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole

Pap:

5-(pyren-1-yl)pentanoic acid

PCBA:

[6,6]-phenyl-C61-butyric acid

SPN:

Self-assembling Peptide Nanotubes

TBAF:

Tetrabutylamonium chloride

TBTU:

O-Benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate

References

  • Amorín M, Castedo L, Granja JR (2003) New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. J Am Chem Soc 125:2844–2845

    Article  PubMed  Google Scholar 

  • Amorín M, Castedo L, Granja JR (2005) Self-assembled peptide tubelets with 7Å pores. Chem Eur J 11:6543–6551

    Article  Google Scholar 

  • Amorín M, Castedo L, Granja JR (2008) Cyclic peptides folding control through N-methylation pattern selection: formation of antiparallel β-sheet dimers, double reverse turns and supramolecular helices by 3α,γ cyclic peptides. Chem Eur J 14:2100–2111

    Article  Google Scholar 

  • Ashkenasy N, Horne WS, Ghadiri MR (2006) Design of self-assembling peptide nanotubes with delocalized electronic states. Small 2:99–102

    Article  PubMed  CAS  Google Scholar 

  • Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011

    Article  CAS  Google Scholar 

  • Brea RJ, Amorín M, Castedo L, Granja JR (2005) Methyl-blocked dimeric α,γ-peptide nanotube segments: formation of a peptide heterodimer through backbone-backbone interactions. Angew Chem Int Ed 44:5710–5713

    Article  CAS  Google Scholar 

  • Brea RJ, López-Deber MP, Castedo L, Granja JR (2006) Synthesis of ω-(hetero)arylalkynylated α-amino acid by Sonogashira-type reactions in aqueous media. J Org Chem 71:7870–7873

    Article  PubMed  CAS  Google Scholar 

  • Brea RJ, Castedo L, Granja JR (2007a) Large-diameter self-assembled dimers of α,γ-cyclic peptides, with the nanotubular solid-state structure of cyclo-[(l-Leu-d-Me N-γ-Acp)4-]·4CHCl2COOH. Chem Commun (31):3267–3269

  • Brea RJ, Castedo L, Granja JR, Herranz MÁ, Sanchez L, Martín N, Seitz W, Guldi DM (2007b) Electron transfer in Me-blocked heterodimeric α,γ-peptide nanotubular donor-acceptor hybrids. Proc Natl Acad Sci USA 104:5291–5294

    Article  PubMed  CAS  Google Scholar 

  • Brea RJ, Vázquez ME, Mosquera M, Castedo L, Granja JR (2007c) Controlling multiple fluorescent signal output in cyclic peptide-based supramolecular systems. J Am Chem Soc 129:1653–1657

    Article  PubMed  CAS  Google Scholar 

  • Brea RJ, Reiriz C, Granja JR (2010) Towards functional bionanomaterials based on self-assembling cyclic peptides. Chem Soc Rev 39:1448–1456

    Article  PubMed  CAS  Google Scholar 

  • Brea RJ, Pérez-Alvite MJ, Panciera M, Mosquera M, Castedo L, Granja JR (2011) Highly efficient and directional homo- and heterodimeric energy transfer materials based on fluorescently derivatized α,γ-cyclic octapeptides. Chem Asian J 6:110–121

    Article  PubMed  CAS  Google Scholar 

  • Delphine CB, David MR, Jensen JH (2008) Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes. Proteins 73:765–783

    Article  Google Scholar 

  • Dermer VH, Dermer OC (1937) Physical constants of morpholine. J Am Chem Soc 59:1148–1149

    Article  CAS  Google Scholar 

  • Garcia-Fandiño R, Granja JR, D’Abramo M, Orozco M (2009) Theoretical characterization of the dynamical behaviour and transport properties of α,γ-peptide nanotubes in solution. J Am Chem Soc 131:15678–15686

    Article  PubMed  Google Scholar 

  • Hamley L (2007) Peptide fibrillization. Angew Chem Int Ed 46:8128–8147

    Article  CAS  Google Scholar 

  • Hui L, Andrew DR, Jensen JH (2005) Very Fast Empirical Prediction and Interpretation of Protein pKa Values. Proteins 61:704–721

    Article  Google Scholar 

  • Kashida H, Takatsu T, Sekiguchi K, Asanuma H (2010) An efficient FRET between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single base changes. Chem Eur J 16:2479–2486

    Article  CAS  Google Scholar 

  • Khakshoor O, Nowick JS (2008) Artificial β-sheets: chemical models of β-sheets. Curr Opin Chem Biol 12:722–729

    Article  PubMed  CAS  Google Scholar 

  • Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318:1900–1903

    Article  PubMed  CAS  Google Scholar 

  • Kolstoe SE, Ridha BH, Bellotti V, Wang N, Robinson CV, Crutch SJ, Keir G, Kukkastenvehmas R, Gallimore JR, Hutchinson WL, Hawkins PN, Wood SP, Rossor MN, Pepys MB (2009) Molecular dissection of Alzheimer’s disease neuropathology by depletion of serum amyloid P component. Proc Natl Acad Sci USA 106:7619–7623

    Article  PubMed  CAS  Google Scholar 

  • König HM, Kilbinger AFM (2007) Learning from nature: β-sheet mimicking copolymers get organized. Angew Chem Int Ed 46:8334–8340

    Article  Google Scholar 

  • López-Deber MP, Castedo L, Granja JR (2001) Synthesis of N-(3-Arylpropyl)-amino acid derivatives by Sonogashira types of reaction in aqueous media. Org Lett 3:2823–2826

    Article  PubMed  Google Scholar 

  • Martin RB (1996) Comparisons of indefinite self-association models. Chem Rev 96:3043–3064

    Article  PubMed  CAS  Google Scholar 

  • Masuko M, Ohuchi S, Sode K, Ohtani H, Shimadzu A (2000) Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridisation assays under homogenous solution conditions. Nucleic Acids Res 28:e34

    Google Scholar 

  • Matsui H, Gao X (2005) Peptide-Based Nanotubes in Bionanotechnology. Adv Mater 17:2037–2050

    Article  Google Scholar 

  • Nakamura M, Murakami Y, Sasa K, Hayashi H, Yamada K (2008) Pyrene-zipper array assembled via RNA duplex formation. J Am Chem Soc 130:6904–6905

    Article  PubMed  CAS  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5:491–505

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Song HE, Lee SY (2003) Homodimerization and heteroassociation of 6-O-(2-sulfonato-6-naphthyl)-γ-cyclodextrin and 6-deoxy-(pyrene-1-carboxamido)-β-cyclodextrin. J Org Chem 68:7071–7076

    Article  PubMed  CAS  Google Scholar 

  • Pazos E, Vázquez O, Mascareñas JL, Vázquez ME (2009) Peptide-based fluorescent biosensors. Chem Soc Rev 38:3348–3359

    Article  PubMed  CAS  Google Scholar 

  • Reiriz C, Brea RJ, Arranz R, Carrascosa JL, Garibotti A, Manning B, Valpuesta JM, Eritja R, Castedo L, Granja JR (2009) α,γ-Peptide nanotube templating of 1D parallel fullerene arrangements. J Am Chem Soc 131:11335–11337

    Article  PubMed  CAS  Google Scholar 

  • Remaut H, Waksman G (2006) Protein–protein interaction through beta-strand addition. Trends Biochem Sci 31:436–444

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nature Methods 5:507–516

    Article  PubMed  CAS  Google Scholar 

  • Searle MS, Ciani B (2004) Design of β-sheet systems for understanding the thermodynamics and kinetics of protein folding. Curr Opin Struct Biol 14:458–464

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi Y, Tokitoh Y, Hirai T (2006) pH- and H2O-driven triple-mode pyrene fluorescence. Org Lett 8:3841–3844

    Article  PubMed  CAS  Google Scholar 

  • Smeenk JM, Otten MBJ, Thies J, Tirrell DA, Stunnenberg HG, van Hest JCM (2005) Controlled assembly of macromolecular β-sheet fibrils. Angew Chem Int Ed 44:1968–1971

    Article  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  • Ulijn RV, Smith AM (2008) Designing Peptide Based Nanomaterials. Chem Soc Rev 37:664–675

    Article  PubMed  CAS  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley, Weinheim

    Google Scholar 

  • Whitehouse C, Fang J, Aggeli A, Bell M, Brydson R, Fishwick CWG, Henderson JR, Knobler CM, Owens RW, Thomson NH, Smith DA, Boden N (2005) Adsorption and self-assembly of peptides on mica substrates. Angew Chem Int Ed 44:1965–1968

    Article  CAS  Google Scholar 

  • Zhang S (2003) Fabrication of novel materials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Rehm S, Safont-Sempere MM, Würthner F (2009) Nature Chem 1:623–629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MICINN) and the ERDF [SAF2007-61015, CTQ2007-68057-C02-01/BQU and Consolider Ingenio 2010 (CSD2007-00006)], the Xunta de Galicia (PGIDIT08CSA047209PR and GRC2010/012) and European project Magnifyco (NMP4-SL-2009-228622). MJPA thanks the Spanish MICINN for her PhD contract (FPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Granja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Alvite, M.J., Mosquera, M., Castedo, L. et al. Toward the rational design of molecular rotors ion sensors based on α,γ-cyclic peptide dimers. Amino Acids 41, 621–628 (2011). https://doi.org/10.1007/s00726-011-0886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0886-2

Keywords

Navigation